scholarly journals Self-adapted clustering of solute atoms into a confined two-dimensional prismatic platelet with an ellipse-like quasi-unit cell

IUCrJ ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 823-829 ◽  
Author(s):  
Hongbo Xie ◽  
Junyuan Bai ◽  
Hucheng Pan ◽  
Xueyong Pang ◽  
Yuping Ren ◽  
...  

This paper reports a new structured prismatic platelet, self-assembled by an ellipse-like quasi-unit cell, precipitated in Mg–In–Yb and Mg–In–Ca ternary alloys and aged isothermally at 200°C using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with density functional theory computations. The ordered stacking of solute atoms along the [0001]α direction based on elliptically shaped self-adapted clustering leads to the generation of the quasi-unit cell. The bonding of these ellipse-like quasi-unit-cell rods by the Mg atomic columns along the 〈11{\overline 2}0〉α directions formed a two-dimensional planar structure, which has three variants with a {10{\overline 1}0}α habit plane and full coherence with the α-Mg matrix. This finding is important for understanding the clustering and stacking behaviors of solute atoms in condensed matter, and is expected to guide the future design of novel high-strength Mg alloys strengthened by such high-density prismatic platelets.

2020 ◽  
Author(s):  
Xie Hongbo ◽  
Junyuan Bai ◽  
Haiyan Ren ◽  
Shanshan Li ◽  
Hucheng Pan ◽  
...  

Abstract Z phase is one of the three basic units by which the Frank-Kasper phases are generally assembled. Compared to the other two basic units, i.e., A15 and C15 structures, the Z phase structure is rarely experimentally observed because of a relatively large volume ratio among the constituents to inhibit its formation. Moreover, the discovered Z structures are generally the three-dimensional (3D) ordered Gibbs bulk phases to conform to their thermodynamic stability. Herein, we confirmed the existence of a metastable two-dimensional (2D) Frank-Kasper Z phase with one unit-cell height in the crystallography in a model Mg-Sm-Zn system, by using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with density functional theory (DFT) calculations. This finding is important for understanding the relationship between the traditional crystal structures and the quasicrystals, and it is also expected to provide a new insight to understand the clustering and stacking behavior of atoms in condensed matters.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Hideyuki Yokobayashi ◽  
Kyosuke Kishida ◽  
Haruyuki Inui ◽  
Michiaki Yamasaki ◽  
Yoshihito Kawamura

ABSTRACTCrystal structure of a long period stacking ordered (LPSO) phase newly found in Mg-Al-Gd ternary alloys was investigated by scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM). The Mg-Al-Gd LPSO phase was confirmed to be constructed with 6-layer structural blocks, which is similar to the case of the 18R-type LPSO phases in the other Mg-TM-RE alloys. Atomic resolution high-angle annular dark-field (HAADF) STEM imaging revealed that Gd atoms are enriched in four layers instead of two layers and are ordered in a long range within the 6-layer structural block.


2015 ◽  
Vol 17 (12) ◽  
pp. 7898-7906 ◽  
Author(s):  
Orlando Miramontes ◽  
Franco Bonafé ◽  
Ulises Santiago ◽  
Eduardo Larios-Rodriguez ◽  
Jesús J. Velázquez-Salazar ◽  
...  

In this work, the adsorption of very small rhenium clusters (2–13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) in combination with density functional theory calculations.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


Author(s):  
Z. L. Wang ◽  
J. Bentley

The success of obtaining atomic-number-sensitive (Z-contrast) images in scanning transmission electron microscopy (STEM) has shown the feasibility of imaging composition changes at the atomic level. This type of image is formed by collecting the electrons scattered through large angles when a small probe scans across the specimen. The image contrast is determined by two scattering processes. One is the high angle elastic scattering from the nuclear sites,where ϕNe is the electron probe function centered at bp = (Xp, yp) after penetrating through the crystal; F denotes a Fourier transform operation; D is the detection function of the annular-dark-field (ADF) detector in reciprocal space u. The other process is thermal diffuse scattering (TDS), which is more important than the elastic contribution for specimens thicker than about 10 nm, and thus dominates the Z-contrast image. The TDS is an average “elastic” scattering of the electrons from crystal lattices of different thermal vibrational configurations,


Author(s):  
R.D. Leapman ◽  
S.Q. Sun ◽  
S-L. Shi ◽  
R.A. Buchanan ◽  
S.B. Andrews

Recent advances in rapid-freezing and cryosectioning techniques coupled with use of the quantitative signals available in the scanning transmission electron microscope (STEM) can provide us with new methods for determining the water distributions of subcellular compartments. The water content is an important physiological quantity that reflects how fluid and electrolytes are regulated in the cell; it is also required to convert dry weight concentrations of ions obtained from x-ray microanalysis into the more relevant molar ionic concentrations. Here we compare the information about water concentrations from both elastic (annular dark-field) and inelastic (electron energy loss) scattering measurements.In order to utilize the elastic signal it is first necessary to increase contrast by removing the water from the cryosection. After dehydration the tissue can be digitally imaged under low-dose conditions, in the same way that STEM mass mapping of macromolecules is performed. The resulting pixel intensities are then converted into dry mass fractions by using an internal standard, e.g., the mean intensity of the whole image may be taken as representative of the bulk water content of the tissue.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yung-Chang Lin ◽  
Sungwoo Lee ◽  
Yueh-Chiang Yang ◽  
Po-Wen Chiu ◽  
Gun-Do Lee ◽  
...  

AbstractInterhalogen compounds (IHCs) are extremely reactive molecules used for halogenation, catalyst, selective etchant, and surface modification. Most of the IHCs are unstable at room temperature especially for the iodine-monofluoride (IF) whose structure is still unknown. Here we demonstrate an unambiguous observation of two-dimensional (2D) IF bilayer grown on the surface of WSe2 by using scanning transmission electron microscopy and electron energy loss spectroscopy. The bilayer IF shows a clear hexagonal lattice and robust epitaxial relationship with the WSe2 substrate. Despite the IF is known to sublimate at −14 °C and has never found as a solid form in the ambient condition, but surprisingly it is found stabilized on a suitable substrate and the stabilized structure is supported by a density functional theory. This 2D form of IHC is actually a byproduct during a chemical vapor deposition growth of WSe2 in the presence of alkali metal halides as a growth promoter and requires immediate surface passivation to sustain. This work points out a great possibility to produce 2D structures that are unexpected to be crystallized or cannot be obtained by a simple exfoliation but can be grown only on a certain substrate.


2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


Sign in / Sign up

Export Citation Format

Share Document