scholarly journals Expression, purification and crystallization of the N-terminal Solanaceae domain of the Sw-5b NLR immune receptor

Author(s):  
Jia Li ◽  
Jian Xin ◽  
Xinyan Zhao ◽  
Yaqian Zhao ◽  
Tongkai Wang ◽  
...  

Plant nucleotide-binding domain and leucine-rich repeat receptors (NLRs) play crucial roles in recognizing pathogen effectors and activating plant immunity. The tomato NLR Sw-5b is a coiled-coil NLR (CC-NLR) immune receptor that confers resistance against tospoviruses, which cause serious economic losses in agronomic crops worldwide. Compared with other CC-NLRs, Sw-5b possesses an extended N-terminal Solanaceae domain (SD). The SD of Sw-5b is critical for recognition of the tospovirus viral movement protein NSm. An SD is also frequently detected in many NLRs from Solanaceae plants. However, no sequences homologous to the SD have been detected in animals or in plants other than Solanaceae. The properties of the SD protein are largely unknown, and thus 3D structural information is vital in order to better understand its role in pathogen perception and the activation of immune receptors. Here, the expression, purification and crystallization of Sw-5b SD (amino acids 1–245) are reported. Native and selenomethionine-substituted crystals of the SD protein belonged to space group P3112, with unit-cell parameters a = 81.53, b = 81.53, c = 98.44 Å and a = 81.63, b = 81.63, c = 98.80 Å, respectively. This is the first report of a structural study of the noncanonical SD domain of the NLR proteins from Solanaceae plants.

Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. eaav5870 ◽  
Author(s):  
Jizong Wang ◽  
Meijuan Hu ◽  
Jia Wang ◽  
Jinfeng Qi ◽  
Zhifu Han ◽  
...  

Nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen effectors to trigger plant immunity. Biochemical mechanisms underlying plant NLR activation have until now remained poorly understood. We reconstituted an active complex containing the Arabidopsis coiled-coil NLR ZAR1, the pseudokinase RKS1, uridylated protein kinase PBL2, and 2′-deoxyadenosine 5′-triphosphate (dATP), demonstrating the oligomerization of the complex during immune activation. The cryo–electron microscopy structure reveals a wheel-like pentameric ZAR1 resistosome. Besides the nucleotide-binding domain, the coiled-coil domain of ZAR1 also contributes to resistosome pentamerization by forming an α-helical barrel that interacts with the leucine-rich repeat and winged-helix domains. Structural remodeling and fold switching during activation release the very N-terminal amphipathic α helix of ZAR1 to form a funnel-shaped structure that is required for the plasma membrane association, cell death triggering, and disease resistance, offering clues to the biochemical function of a plant resistosome.


Author(s):  
Morgan E. Milton ◽  
Jun-yong Choe ◽  
Richard B. Honzatko ◽  
Scott W. Nelson

Infection by the parasitePlasmodium falciparumis the leading cause of malaria in humans. The parasite has a unique and essential plastid-like organelle called the apicoplast. The apicoplast contains a genome that undergoes replication and repair through the action of a replicative polymerase (apPOL). apPOL has no direct orthologs in mammalian polymerases and is therefore an attractive antimalarial drug target. No structural information exists for apPOL, and the Klenow fragment ofEscherichia coliDNA polymerase I, which is its closest structural homolog, shares only 28% sequence identity. Here, conditions for the crystallization of and preliminary X-ray diffraction data from crystals ofP. falciparumapPOL are reported. Data complete to 3.5 Å resolution were collected from a single crystal (2 × 2 × 5 µm) using a 5 µm beam. The space groupP6522 (unit-cell parametersa=b= 141.8,c= 149.7 Å, α = β = 90, γ = 120°) was confirmed by molecular replacement. Refinement is in progress.


2021 ◽  
Author(s):  
Adeline Harant ◽  
Hsuan Pai ◽  
Toshiyuki Sakai ◽  
Sophien Kamoun ◽  
Hiroaki Adachi

Abstract Nicotiana benthamiana has emerged as a complementary experimental system to Arabidopsis thaliana. It enables fast-forward in vivo analyses primarily through transient gene expression and is particularly popular in the study of plant immunity. Recently, our understanding of nucleotide-binding leucine-rich repeat (NLR) plant immune receptors has greatly advanced following the discovery of the Arabidopsis HOPZ-ACTIVATED RESISTANCE1 (ZAR1) resistosome. Here, we describe a vector system of 72 plasmids that enables functional studies of the ZAR1 resistosome in N. benthamiana. We showed that ZAR1 stands out among the coiled coil class of NLRs (CC-NLRs) for being highly conserved across distantly related dicot plant species and confirmed NbZAR1 as the N. benthamiana ortholog of Arabidopsis ZAR1. Effector-activated and autoactive NbZAR1 trigger the cell death response in N. benthamiana and this activity is dependent on a functional N-terminal α1 helix. C-terminally tagged NbZAR1 remains functional in N. benthamiana, thus enabling cell biology and biochemical studies in this plant system. We conclude that the NbZAR1 open source pZA plasmid collection forms an additional experimental system to Arabidopsis for in planta resistosome studies.


2021 ◽  
Author(s):  
Cian Duggan ◽  
Eleonora Moratto ◽  
Zachary Savage ◽  
Eranthika Hamilton ◽  
Hiroaki Adachi ◽  
...  

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet the subcellular localization of NLRs pre- and post- activation during pathogen infection remains poorly known. Here we show that NRC4, from the 'NRC' solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extra-haustorial membrane (EHM), presumably to mediate response to perihaustorial effectors, that are recognized by NRC4-dependent sensor NLRs. However not all NLRs accumulate at the EHM, as the closely related helper NRC2, and the distantly related ZAR1, did not accumulate at the EHM. NRC4 required an intact N- terminal coiled coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that post-activation, NRC4 probably undergoes a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection however, NRC4 formed puncta mainly at the EHM and to a lesser extent at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-35
Author(s):  
Julia Skokowa ◽  
Mohammad Elgamacy ◽  
Patrick Müller

Protein therapeutics are clinically developed and used as minorly engineered forms of their natural templates. This direct adoption of natural proteins in therapeutic contexts very frequently faces major challenges, including instability, poor solubility, and aggregation, which may result in undesired clinical outcomes. In contrast to classical protein engineering techniques, de novo protein design enables the introduction of radical sequence and structure manipulations, which can be used to address these challenges. In this work, we test the utility of two different design strategies to design novel granulopoietic proteins, using structural information from human granulocyte-colony stimulating factor (hG-CSF) as a template. The two strategies are: (1) An epitope rescaffolding where we migrate a tertiary structural epitope to simpler, idealised, proteins scaffolds (Fig. 1A-C), and (2) a topological refactoring strategy, where we change the protein fold by rearranging connections across the secondary structures and optimised the designed sequence of the new fold (Fig. 1A,D,E). Testing only eight designs, we obtained novel granulopoietic proteins that bind to the G-CSF receptor, have nanomolar activity in cell-based assays, and were highly thermostable and protease-resistant. NMR structure determination showed three designs to match their designed coordinates within less than 2.5 Å. While the designs possessed starkly different sequence and structure from the native G-CSF, they showed very specific activity in differentiating primary human haematopoietic stem cells into fully mature granulocytes. Morever, one design shows significant and specific activity in vivo in zebrafish and mice. These results are prospectively directing us to investigate the role of dimerisation geometry of G-GCSF receptor on activation magnitude and downstream signalling pathways. More broadly, the results also motivate our ongoing work on to design other heamatopoietic agents. In conclusion, our findings highlight the utility of computational protein design as a highly effective and guided means for discovering nover receptor modulators, and to obtain new mechanistic information about the target molecule. Figure 1. Two different strategies to generate superfolding G-CSF designs. (A) X-ray structure of G-CSF (orange) bound to its cognate receptor (red) through its binding epitope (blue). According to the epitope rescaffolding strategy, (B) the critical binding epitope residues were disembodied and used as a geometric search query against the entire Protein Data Bank (PDB) to retrieve structurally compatible scaffolds. The top six compatible scaffolds structures are shown in cartoon representation. (C) The top two templates chosen for sequence design, were a de novo designed coiled-coil and a four-helix bundle with unknown function. The binding epitopes were grafted, and the scaffolds were optimised to rigidly host the guest epitope. (D-E) According to the topological refactoring strategy (D) the topology of the native G-CSF was rewired from around the fixed binding epitope, and then was further mutated to idealise the core residues (blue volume (E)) and residues distal from the binding epitope (orange crust (E)). Both strategies aimed at simplifying the topology, reducing the size, and rigidifying the bound epitope conformation through alternate means. Figure 1 Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 70 (a1) ◽  
pp. C141-C141
Author(s):  
Ozen Ozgen ◽  
Engin Kendi ◽  
Semra Koyunoglu ◽  
Akgul Yesilada ◽  
Hwo-Shuenn Sheu

A significant part of medicine is based on the discovery and development of drugs. It is very important to know the crystal structure of pharmaceutical compounds for fundamental understanding of structure, physical and chemical properties. Many of these materials are available only as powders. So any structural information must be obtained from powder diffraction. I am going to present following the stages while solving the structure of C23H19N4OBr, 2-[3-phenyl-4(m-bromophenyl)-2-pyrazolin-1-yl]-3-methyl-4(3H)-quinazolinone, from 2-pyrazolines derivatives. The compounds are known to display various biological properties such as fungicidal insecticidal, anti bacterial, anti viral activities, pharmacological properties such as antiinflammatory agents and have industral properties(1). The powder diffraction data was collected with Debye Scherrer camera at the BL01C2 beamline at room temperature in National Synchrotron Radiation Research Center(NSRRC), Taiwan. X-ray of wavelength was 1.0333Å. This compound crystallizes in orthorhombic system space group P bca, Z=8, unit cell parameters of a=25.83(1)Å, b=15.55(5)Å, c=10.63(3)Å, and V=4266.0(10)Å3. Reliability factors were reached Rwp=0.075, Rp=0.053, RB=0.086 ve S=1.31 after Rietveld refinement.


Author(s):  
Ana Cámara-Artigas ◽  
Monserrat Andújar-Sánchez ◽  
Emilia Ortiz-Salmerón ◽  
Celia Cuadri ◽  
Eva S. Cobos ◽  
...  

The α-spectrin SH3 domain (Spc-SH3) is a small modular domain which has been broadly used as a model protein in folding studies and these studies have sometimes been supported by structural information obtained from the coordinates of Spc-SH3 mutants. The structure of B5/D48G, a multiple mutant designed to improve the hydrophobic core and as a consequence the protein stability, has been solved at 1 Å resolution. The crystals belonged to the orthorhombic space groupP212121, with unit-cell parametersa= 24.79,b= 37.23,c= 62.95 Å. This mutant also bears a D48G substitution in the distal loop and this mutation has also been reported to increase the stability of the protein by itself. The structure of the B5/D48G mutant shows a highly packed hydrophobic core and a more ordered distal loop compared with previous Spc-SH3 structures.


Author(s):  
Sanjeev Kumar ◽  
Victoria Hedrick ◽  
Seema Mattoo

Pasteurella multocida causes respiratory-tract infections in a broad range of animals, as well as opportunistic infections in humans. P. multocida secretes a multidomain toxin called PfhB2, which contains a YopT-like cysteine protease domain at its C-terminus. The YopT domain of PfhB2 contains a well conserved Cys–His–Asp catalytic triad that defines YopT family members, and shares high sequence similarity with the prototype YopT from Yersinia sp. To date, only one crystal structure of a YopT family member has been reported; however, additional structural information is needed to help characterize the varied substrate specificity and enzymatic action of this large protease family. Here, a catalytically inactive C3733S mutant of PfhB2 YopT that provides enhanced protein stability was used with the aim of gaining structural insight into the diversity within the YopT protein family. To this end, the C3733S mutant of PfhB2 YopT has been successfully cloned, overexpressed, purified and crystallized. Diffraction data sets were collected from native crystals to 3.5 Å resolution and a single-wavelength anomalous data set was collected from an iodide-derivative crystal to 3.2 Å resolution. Data pertaining to crystals belonging to space group P31, with unit-cell parameters a = 136.9, b = 136.9, c = 74.7 Å for the native crystals and a = 139.2, b = 139.2, c = 74.7 Å for the iodide-derivative crystals, are discussed.


Author(s):  
Nuo Cheng ◽  
Hao Zhang ◽  
Shiyan Zhang ◽  
Xiaodan Ma ◽  
Guoyu Meng

AGAP1 is often considered to regulate membrane trafficking, protein transport and actin cytoskeleton dynamics. Recent studies have shown that aberrant expression of AGAP1 is associated with many diseases, including neurodevelopmental disorders and acute lymphoblastic leukemia. It has been proposed that the GTP-binding protein-like domain (GLD) is involved in the binding of cofactors and thus regulates the catalytic activity of AGAP1. To obtain a better understanding of the pathogenic mechanism underpinning AGAP1-related diseases, it is essential to obtain structural information. Here, the GLD (residues 70–235) of AGAP1 was overexpressed in Escherichia coli BL21 (DE3) cells. Affinity and gel-filtration chromatography were used to obtain AGAP1GLD with high purity for crystallization. Using the hanging-drop vapor-diffusion method with the protein at a final concentration of 20 mg ml−1, AGAP1GLD protein crystals of suitable size were obtained. The crystals were found to diffract to 3.0 Å resolution and belonged to space group I4, with unit-cell parameters a = 100.39, b = 100.39, c = 48.08 Å. The structure of AGAP1GLD exhibits the highly conserved functional G1–G5 loops and is generally similar to other characterized ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), implying an analogous function to Arf GAPs. Additionally, this study indicates that AGAP1 could be classified as a type of NTPase, the activity of which might be regulated by protein partners or by its other domains. Taken together, these results provide insight into the regulatory mechanisms of AGAP1 in cell signaling.


Sign in / Sign up

Export Citation Format

Share Document