scholarly journals Metal oxide materials for high temperature CO2sorption studies

2014 ◽  
Vol 70 (a1) ◽  
pp. C69-C69
Author(s):  
Adriano Pavan ◽  
Peter Blanchard ◽  
Samuel Liu ◽  
Chris Ling

In recent years, a number of novel ceramic oxide materials have emerged that are capable of absorbing CO2 at high temperatures (>500C) while remaining stable over a large number of cycles and a wide range of temperatures [1]. The most promising are been considered for carbon capture applications – specifically, for use in combustion chambers and the smoke stacks of power plants where combustion gases which contain primarily a mixture of CO2 and N2 at high temperature. Compared to other CO2 sequestration technologies, these ceramics have some advantages (eg. chemisorption at high temperatures) and disadvantages (eg. limited kinetics over time) [3]. Examples of oxides already known to show significant CO2 absorption include Li5AlO4, Li6Zr2O7, Na2ZrO3 and Ba4Sb2O9. The phase formations and structural evolution of these metal oxides have been studied under environmental conditions mimicing those found in combustion chambers and power plants, over the temperature range 873–1173 K. CO2 absorption by these materials is believed to proceed through a layering effect of the sorbent material, explained through a core-shell model (see figure). Each phase is represented as a layer covering a particle, with the outermost layer exposed and allowed to react with the environment. Detailed studies into the mechanism of CO2 absorption and the material layers will shed more information that can be used to fine tune the materials to increase their CO2 absorption capacity. Previous work has focused on the identification of phases ex situ and studies of their practical absorption capacity and kinetics. The new work we will present here uses a combination of a x-ray spectroscopy, x-ray and neutron diffraction, to understand both how the sorption process works and how the structural evolution of the phases affects the CO2 sorption of the materials over time in-situ.

2007 ◽  
Vol 353-358 ◽  
pp. 130-133
Author(s):  
Keun Bong Yoo ◽  
Jae Hoon Kim

The objective of this study is to examine the feasibility of the X-ray diffraction method for the fatigue life assessment of high-temperature steel pipes used for main steam pipelines, re-heater pipelines and headers etc. in power plants. In this study, X-ray diffraction tests were performed on the specimens simulated for low cycle fatigue damage, in order to estimate fatigue properties at the various stages of fatigue life. As a result of X-ray diffraction tests, it was confirmed that the full width at the half maximum (FWHM) decreased with an increase in the fatigue life ratio, and that the FWHM and the residual stress due to fatigue damage were algebraically linearly related to the fatigue life ratio. From this relationship, a direct assessment of the remaining fatigue life was feasible.


Author(s):  
F. Frey ◽  
E. Weidner

AbstractComplementary neutron and x-ray diffuse scattering may provide insight into structural super-ordering and disordering of decagonal quasicrystals (d-phases), and, in consequence, into the formation and stability of aperiodically ordered alloys. Neutron diffraction makes a contrasting almost isoelectronic atomic species possible, as well as a separation of elastic and inelastic diffuse intensity contributions. Experimental work at high temperatures is comparatively unproblematic. The method suffers, however, from the difficulty in obtaining sufficiently sized mono-grain samples and a lack of dedicated neutron diffraction instruments. Recent results, with a main focus on high-temperature (<1000°C) investigations of disordered decagonal Al—Ni—Co phases are reported and some tentative models are discussed.


CrystEngComm ◽  
2016 ◽  
Vol 18 (39) ◽  
pp. 7463-7470 ◽  
Author(s):  
Kyu-Young Park ◽  
Hyungsub Kim ◽  
Seongsu Lee ◽  
Jongsoon Kim ◽  
Jihyun Hong ◽  
...  

In this paper, the structural evolution of Li(Mn1/3Fe1/3Co1/3)PO4, which is a promising multi-component olivine cathode materials, is investigated using combined in situ high-temperature X-ray diffraction and flux neutron diffraction analyses at various states of charge.


2016 ◽  
Vol 7 (1) ◽  
pp. 73-82
Author(s):  
S.A. Bolegenova ◽  
◽  
A.S. Askarova ◽  
A. Bekmukhamet ◽  
S. Bolegenova ◽  
...  

2019 ◽  
Vol 20 (4) ◽  
pp. 928 ◽  
Author(s):  
Xianyao Yan ◽  
Yingjie Li ◽  
Xiaotong Ma ◽  
Jianli Zhao ◽  
Zeyan Wang

Lithium silicate (Li4SiO4) material can be applied for CO2 capture in energy production processes, such as hydrogen plants, based on sorption-enhanced reforming and fossil fuel-fired power plants, which has attracted research interests of many researchers. However, CO2 absorption performance of Li4SiO4 material prepared by the traditional solid-state reaction method is unsatisfactory during the absorption/regeneration cycles. Improving CO2 absorption capacity and cyclic stability of Li4SiO4 material is a research highlight during the energy production processes. The state-of-the-art kinetic and quantum mechanical studies on the preparation and CO2 absorption process of Li4SiO4 material are summarized, and the recent studies on the effects of preparation methods, dopants, and operating conditions on CO2 absorption performance of Li4SiO4 material are reviewed. Additionally, potential research thoughts and trends are also suggested.


Author(s):  
Detlef Schramm

The development of a new family of PE materials with significantly improved processability and long term strength at high temperatures is discussed. These polymers form the basis for a new ISO class of polyethylene materials: PE-RT (Polyethylene of Raised Temperature resistance) for hot and cold water as well as industrial pipe applications. These materials have a unique molecular structure and crystalline microstructure, which provides excellent Long Term Hydrostatic Strength at high temperature without crosslinking the material. PE-RT type materials are successfully used in domestic hot and cold water piping systems for most applications. The easy processing and outstanding material properties made these resins also attractive for use in many industrial applications, where larger dimensions are required and regular Polyethylene cannot be used or has temperature limitations. They also compete against high end engineering plastics, offering significant cost savings. These materials provide significant process advantages to the converters, allowing high line speed pipe production and providing excellent flexibility and ease of installation for the application. A recently developed PE-RT type material offers still higher long-term strength at high temperature and further improved processability. This combination makes this resin particularly suitable for high temperature applications. An example of the latter is in larger diameter cooling water pipes in power plants. Pipes based on these materials can be connected via heat welding or by the use of mechanical fittings. Furthermore this material can be used in industrial applications, were traditional Polyethylene is limited by the temperature resistance and metallic materials suffer from corrosion. The excellent weldability of these materials provides various opportunities to connect also larger dimensions in industrial applications. Another example of this is the use in multi-layer structured oil pipelines on-shore and off-shore. This paper presents the material science and product design concepts that govern the high long-term hydrostatic strength at high temperatures. By controlling the molecular structure, the melt rheology and solid state properties can be influenced. This results in a unique balance of processability and hydrostatic strength. Further discussed are the product features and benefits of PE-RT materials. The paper shows examples of the application range for this type of products, using applications in the domestic pipes market as a reference study.


1960 ◽  
Vol 82 (3) ◽  
pp. 169-178 ◽  
Author(s):  
R. J. Zoschak ◽  
R. W. Bryers

To permit the use of high-vanadium residual oil as fuel for combined super-charged-boiler gas-turbine power plants, it is necessary to determine the treatment required to prevent the high-temperature corrosion and deposit problems associated with this fuel. A test program has been undertaken wherein a number of magnesium and aluminum-bearing additives have been injected into washed residual oil when firing a laboratory-scale, simulated supercharged boiler. Different tube arrangements within the boiler have been tried. Ash collected on the tubes at various locations has been analyzed and its corrosive effect at high temperatures on some types of stainless steel has been evaluated. The results thus far obtained are presented together with some hypotheses regarding the formation of deposits.


2009 ◽  
Vol 62 (4) ◽  
pp. 298 ◽  
Author(s):  
Junhua Huang ◽  
Thomas Rüther

As the climate debate is hotting up, so is the (re)search for finding powerful new materials for the efficient and cost-effective removal of CO2 from flue-gas streams from power plants and other emission sources. Ionic liquids (ILs), exhibiting higher CO2 solubility than conventional organic solvents, have received considerable interest as new CO2 absorbents. The present paper evaluates the advantages and disadvantages of ILs, and provides an overview of the recent developments of ILs for CO2 capture. In conventional ILs, CO2 is absorbed by occupying the free space between the ions through physical absorption mechanisms. As another promising strategy, task-specific ILs have been studied that, by attaching functional groups to the ions, allow the formation of chemical bonds to improve the overall absorption capacity during the CO2 capture process. Other strategies include using ILs as reaction media or as selective absorption materials.


2013 ◽  
Vol 669 ◽  
pp. 115-118 ◽  
Author(s):  
Yin Jie Wang ◽  
Ji Ping Liu ◽  
Mei Xiu Kan ◽  
Ze Quan Liu

Use Nanoscale α-Al2O3 as raw materials, prepared by high temperature solid state reaction, we produced the Lithium Aluminate (Li5AlO4) which can directly absorb CO2 at a temperature between 450°C and 650°C. Respectively use the method of scanning electron microscopy (SEM)、X-ray powder diffractometer (XRD) and thermogravimetric analyzer (TG) for the morphology、structure and the performance of CO2 absorption analysises. The results show that the synthesized Lithium Aluminate (Li5AlO4) materials have a performance of CO2 absorption.


2010 ◽  
Vol 74 (1) ◽  
pp. 85-96 ◽  
Author(s):  
A. M. T. Bell ◽  
R. A. D. Pattrick ◽  
D. J. Vaughan

AbstractIn situ, high-temperature energy-dispersive X-ray powder diffraction (EDXRD) data have been collected on synthetic and a natural sample of mercury sulphide (HgS). These measurements were made between temperatures of 295 and 798 K. Synthetic samples of HgS were prepared by reaction between sulphide and mercury in aqueous solution. In a subsequently dried and aged synthetic HgS sample, heated in vacuo, there is a change from a poorly crystalline pseudocubic material into a well crystalline cubic material in the temperature region 583–623 K. At higher temperature (748 K), there is evidence for a partial phase transition to the high temperature hypercinnabar HgS structure. In a neoformed synthetic sample, heated in a sealed Ti container, the initial ‘pseudocubic’ metacinnabar phase partially transforms to a previously unknown phase (XHgS) in the temperature range 467–522 K. This phase disappears at 527 K, and the metacinnabar phase changes to a well crystalline cubic phase; cinnabar develops at 542 K. The proportion of cinnabar continues to increase up to 647 K. Both metacinnabar and cinnabar phases are retained on cooling. No phase transitions were observed for the natural cinnabar sample.


Sign in / Sign up

Export Citation Format

Share Document