Effect of temperature and pressure on mechanical, surface and electrochemical properties of Al-1.5Cu-5.5Zn-2.5Mg (Alumix-431)

2018 ◽  
Vol 65 (6) ◽  
pp. 558-571 ◽  
Author(s):  
Ayşe Nur Acar ◽  
Rasiha Nefise Mutlu ◽  
Abdul Kadir Ekşi ◽  
Ahmet Ekicibil ◽  
Birgül Yazıcı

Purpose The purpose of this paper is to examine new alloys created from Alumix 431 powder and investigate their mechanical and electrochemical properties. Design/methodology/approach In this study; Alumix-431 alloy samples were prepared using the powder metallurgy (P/M) method applying cold (RT) and warm (50°C and 80°C) compaction methods under pressures of 200 and 250 MPa and were sintered at 600°C in N2(g) atmosphere. Hardness and density of the samples were measured, and corrosion properties were determined by electrochemical impedance spectroscopy charting polarization curves. Surface characterization was determined by contact angle, scanning electron microscopy/mapping, energy dispersive X-ray spectrometry and X-ray diffractometry images. Findings Alumix-431 alloys obtained upon compaction at 250 MPa/50 °C had the highest mechanical properties and corrosion resistance and good surface properties. On the surfaces of Alumix-431 alloys, α-Al, MgZn2, Al2,CuMg, Al2,O3, Al2MgO4 phases were recorded. Originality/value This study aimed to construct a correlation between mechanical and electrochemical properties of the newly created alloys (prepared under special conditions).

2019 ◽  
Vol 272 ◽  
pp. 01001
Author(s):  
Nadia HAMMOUDA ◽  
Kamel BELMOKRE

The purpose of the different operations under the term surface preparation is to get a clean surface able to be coated. It is essential to adapt this preparation in terms of the metallurgical nature of the substrate, cleanliness, its shape and roughness. Surface preparations especially the operations of sandblasting, polishing, or grinding prove of capital importance. It allows to modify the superficial properties of these materials, after these treatments the surface becomes very active. This paper evaluates the mechanical surface treatments effect by sandblasting (Sa 1.5 and Sa 2.5) on the electrochemical corrosion characteristics of C-1020 carbon steel in 3% NaCl solution electrolyte simulating aggressive sea atmosphere. Investigations are conducted using stationary (free potential "E-t, polarization curves "E-i", the Tafel rights and the Rp) and nonstationary electrochemical tools such as electrochemical impedance. The results obtained allowed us to highlight that sandblasted carbon steel degrades with immersion time because of the roughness of the surface. These results were confirmed by the plot of the electrochemical impedance diagrams, confirming that the process governing kinetics is under charge transfer control. Good protection against corrosion cannot be obtained only with a good surface preparation of the adapted steel.


2020 ◽  
Vol 67 (6) ◽  
pp. 529-536
Author(s):  
Shima Nakisa ◽  
Naghi Parvini Ahmadi ◽  
Javad Moghaddam ◽  
Habib Ashassi-Sorkhabi

Purpose The composition and corrosion behaviors of recycled and virgin Pb anode were investigated in industrial zinc electrowinning solution with different methods. The purpose of this study is the illustration of good anticorrosion activity of virgin Pb anodes compared to recycled one in industrial operation, while the compositions of both of them are the same which obtained from quantmetry method. Design/methodology/approach Its corrosion properties and electrocatalytic activity toward oxygen evolution reaction were appraised using potentiodynamic polarization, electrochemical impedance spectroscopy, galvanostatic polarization and ionic equilibrium methods. In addition, composition of anodes investigated with X-ray photoelectron spectroscopy (XPS) method. The surface composition of samples was studied via X-ray diffractogram (XRD). Findings The results indicate that the anodes display different anodic behaviors during the galvanostatic polarization. Virgin Pb anode shows a “potential reduction” about 320 mV lower than recycled Pb anode after 6 h of polarization; also, the stable potential after 72 h for virgin Pb anode is 100 mV lower than recycled Pb anode. Also, The XPS results show a trace amount of Cl in recycled anodes which cause the more corrosion activity. XRD results indicate that virgin Pb anodes have been covered by more oxides than recycled anodes after 72 h of electrowinning. Originality/value The treatment of corrosion behavior by virginity has not been detected by any researchers yet. Therefore, it is imperative to study the corrosion behavior and exact composition analysis of virgin and recycled Pb anodes to comprehension of them. This paper fulfills this need.


2021 ◽  
Vol 12 (5) ◽  
pp. 7075-7091

The extract of Fucus spiralis (FS) was tested as a corrosion inhibitor of carbon steel in a 1M HCl medium. The anti-corrosion properties were analyzed by gravimetric and electrochemical techniques such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The surface characterization of carbon steel submerged in the optimal solution was carried out using UV-Visible, UV-Vis-NIR, and Optical microscopy analyses. Electrochemical and gravimetric results demonstrated that inhibitory efficiencies increase with increasing inhibitor concentration and the efficiency reaches 87% at a concentration of 0.5 g/L. According to Tafel extrapolated polarisation measurements, the FS also worked as a mixed-type corrosion inhibitor and changed the mechanism of anodic reactions. EIS analysis showed that a depressed capacitive loop dominates the Nyquist plot of impedance and enhances the polarization resistance (Rp) to 161.9 Ω cm2 with a reduction of the double layer capacity (Cdl) of carbon steel to 61.8 μF/cm2. This protection is assured by an adsorption mechanism based on the isothermal Langmuir adsorption model, which positively affects the thermodynamic parameters. UV-Visible, UV-Vis-NIR analyses exhibited that inhibitor decreases the iron oxides like hematite, Magnetite, and Goethite, Maghemite, Lepidocrocite, δ-FeOOH of the metal surface and delays the dissolution of the bare metal of iron to the ferrous ions, notably that optical morphology showed that FS extract decreases the aggressivity of HCl.


2019 ◽  
Vol 31 (1) ◽  
pp. 52-67 ◽  
Author(s):  
Muhammad Firdaus Mohd Nazeri ◽  
Muhamad Zamri Yahaya ◽  
Ali Gursel ◽  
Fakhrozi Cheani ◽  
Mohamad Najmi Masri ◽  
...  

PurposeThe purpose of this paper is to review and examine three of the most common corrosion characterization techniques specifically on Sn-Zn solders. The discussion will highlight the configurations and recent developments on each of the compiled characterization techniques of potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy (EIS).Design/methodology/approachThe approach will incorporate a literature review of previous works related to the experimental setups and common parameters.FindingsThe potentiostatic polarization, potentiodynamic polarization and EIS were found to provide crucial and vital information on the corrosion properties of Sn-Zn solders. Accordingly, this solder relies heavily on the amount of Zn available because of the inability to produce the intermetallic compound in between the elements. Further, the excellent mechanical properties and low melting temperature of the Sn-Zn solder is undeniable, however, the limitations regarding corrosion resistance present opportunities in furthering research in this field to identify improvements. This is to ensure that the corrosion performance can be aligned with the outstanding mechanical properties. The review also identified and summarized the advantages, recent trends and important findings in this field.Originality/valueThe unique challenges and future research directions regarding corrosion measurement in Sn-Zn solders were shown to highlight the rarely discussed risks and problems in the reliability of lead-free soldering. Many prior reviews have been undertaken of the Sn-Zn system, but limited studies have investigated the corrosive properties. Therefore, this review focuses on the corrosive characterizations of the Sn-Zn alloy system.


2020 ◽  
Vol 98 (4) ◽  
pp. 169-178 ◽  
Author(s):  
M. Shehata ◽  
S.M. Azab ◽  
A.M. Fekry

The analysis and detection of caffeine (Caf) is very useful due to its widespread usage in several daily consumed beverages, food products, and pharmacological preparations with various physiological effects. The preparation of a newly electrodeposited Ag nanoparticles – cellulose acetate phthalate (CAP) – chitosan (Chit) modified carbon paste (ACCMCP) sensor for sensitive determination of Caf in 0.01 mol L−1 H3PO4 solution (pH 1.0–5.0) both in aqueous and micellar media (0.5 mmol L−1 SDS) was achieved. The interaction of Caf was monitored using electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, and chronoamperometry, and surface characterization was carried out using X-ray diffraction, scanning electron microscope, and energy dispersive X-ray techniques. The linear detection range of Caf was between 4 and 500 μmol L−1 (r2 = 0.955) and the limit of detection obtained from the calibration plot was 0.252 μmol L−1. The sensor was applicable for detecting Caf in numerous real samples with recoveries from 98.03% to 101.60% without interference of any accompanying species, which ensures high method selectivity.


2014 ◽  
Vol 61 (5) ◽  
pp. 319-327 ◽  
Author(s):  
Mohamed Gobara ◽  
Mohamed Shamekh

Purpose – This paper aims to study both the mechanical properties and the corrosion behavior of the synthesized in situ (TiC-TiB2) particulates/AZ91 magnesium matrix composite and compare the results with that of the conventional AZ91D alloy. Design/methodology/approach – Scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were used to study the surface morphology and crystalline structure. Mechanical compression tests were used to investigate the mechanical performance according to ASTM E9-89a. The corrosion behavior of the synthesized magnesium alloy was examined using both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques in dilute Harrison solutions. Findings – The microstructure of the Mg composite showed a uniform distribution of reinforcing phases. Also, the reinforcing phases were formed without residual intermediate phases. The addition of titanium and boron carbides not only enhanced the mechanical properties of the matrix but also improve its corrosion behavior. Originality/value – This is the first time that magnesium matrix composite has been to synthesized with TiC and TiB2 particulates starting from starting from Ti and B carbides powder without adding aluminium using practical and low-cost technique (in situ reactive infiltration technique). This paper studies the corrosion behavior of synthesized Mg matrix in dilute Harrison solution and compares the results with that of conventional AZ91D.


2020 ◽  
Vol 835 ◽  
pp. 288-296 ◽  
Author(s):  
Adel Attia ◽  
Lobna A. Khorshed ◽  
Lamiaa Z. Mohamed ◽  
Mohammed A. Gepreel

Ti-Mn alloy has a high specific strength, excellent cold workability and good biocompatibility. A cold rolled Ti-7 wt.% Mn was compared to annealed sample at 900°C for 10 min and the corrosion resistance property was tested in artificial saliva solution (AS). The Ti-7 wt.% Mn alloys (cold rolled and annealed) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and compared to pure Ti. Simultaneously, the alloys tested in the AS solution for up to 28 days mainly by following the open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS), SEM and EDX. Annealed Ti-7wt.% Mn showed good corrosion properties similar to that of pure Ti, hence the new Ti-7wt.%Mn alloy have higher specific strength than pure Ti, yet showed same corrosion properties which favor implanted dental applications.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 591 ◽  
Author(s):  
Sebastian Feliu ◽  
Lucien Veleva ◽  
Federico García-Galvan

In this work, the corrosion behaviors of the AZ31B alloy in Ringer’s solution at 20 °C and 37 °C were compared over four days to better understand the influence of temperature and immersion time on corrosion rate. The corrosion products on the surfaces of the AZ31B alloys were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) provided information about the protective properties of the corrosion layers. A significant acceleration in corrosion rate with increasing temperature was measured using mass loss and evolved hydrogen methods. This temperature effect was directly related to the changes in chemical composition and thickness of the Al-rich corrosion layer formed on the surface of the AZ31B alloy. At 20 °C, the presence of a thick (micrometer scale) Al-rich corrosion layer on the surface reduced the corrosion rate in Ringer’s solution over time. At 37 °C, the incorporation of additional Mg and Al compounds containing Cl into the Al-rich corrosion layer was observed in the early stages of exposure to Ringer’s solution. At 37 °C, a significant decrease in the thickness of this corrosion layer was noted after four days.


2017 ◽  
Vol 64 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Morteza Hoseinieh ◽  
Taghi Shahrabi ◽  
Morteza Farrokhi Rad ◽  
Bahram Ramezanzadeh

Purpose The aim of this paper is to investigate the influence of sour crude oil contaminant on the calcareous scale deposition under cathodic protection of carbon steel in artificial seawater. Design/methodology/approach Electrochemical and surface characterizations are carried out using chronoamperometry, electrochemical impedance spectroscopy, scanning electron microscope/energy dispersive spectroscopy, X-Ray diffraction and Raman spectroscopy techniques. Findings Results showed that sour oil limited the deposit nucleation regarding its volume concentrations. The inhibition mechanism was examined to be simultaneous acts of pH reduction and mackinawite formation beside minor physical adsorption of oil molecules on steel electrode. Originality/value There is no paper concerning the proposed subject, and the idea of this work is fully novel which is of great significance because of the consequences of disastrous oil spill phenomena on the integrity of exposed offshore facilities in terms of optimum protection against probable corrosion mechanisms.


2016 ◽  
Vol 63 (2) ◽  
pp. 82-88 ◽  
Author(s):  
Shengsong Ge ◽  
Menglong Li ◽  
Qian Shao ◽  
Ke Liu ◽  
Junxiang Wang ◽  
...  

Purpose – This paper aims to clarify the effect of metal ions added in the γ-glycidoxypropyltrimethoxysilane (γ-GPS) solutions on the anti-corrosion properties of the γ-GPS coatings on cold-rolled iron (CRI). Design/methodology/approach – The transformations of functional groups involved in reactions during the coating process were characterized by Fourier transformed infrared spectroscopy (FTIR), and the thickness of the γ-GPS coatings on the CRI substrates was measured using high-powered microscopy. The anti-corrosion properties of γ-GPS-treated samples were evaluated by neutral salt spray tests, polarization curves and electrochemical impedance spectroscopy measurements. Findings – The results show that Zn2+ and Mg2+ in the γ-GPS solutions promote the formation of Si-O-Si and Si-O-Fe bonds and improve the anti-corrosion properties of the γ-GPS coatings on CRI. However, Al3+ and Na+ in the γ-GPS solutions do not play this role. Originality/value – Although there have been previous research studies on the γ-GPS coatings on CRI, this paper is the first to study the effect of metal ions added in the silane solutions on the anti-corrosion properties of the γ-GPS coatings, and it has been confirmed that the anti-corrosion properties changed when Zn2+ (or Mg2+) is present.


Sign in / Sign up

Export Citation Format

Share Document