A study of a real-time online monitoring system for the durability of concrete structures

2016 ◽  
Vol 63 (3) ◽  
pp. 184-189
Author(s):  
Mingming Xiao ◽  
Shilong Zhang ◽  
Yanbing Tang ◽  
Zhongmao Lin ◽  
Jiahong Chen

Purpose This study aims to explore the effect of corrosion monitoring technology for ensuring concrete structure safety. Design/methodology/approach A new monitoring system scheme with unattended operation to evaluate the durability of concrete structures is presented, which includes four components, namely, a multi-function embedded sensor, a microprocessor data collecting module, a system data analysis and storage module, and a remote server module. Findings The system carries out monitoring of chloride ion concentration and pH in concrete, corrosion current density and of the self-corrosion potential of the reinforcing steel bar. Originality/value This system provides real-time, online, lossless monitoring for concrete structures.

Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haowei Zhang ◽  
Lili Sun ◽  
Chengli Song ◽  
Ying Liu ◽  
Xueting Xuan ◽  
...  

Purpose Design, fabricate and evaluate all-solid-state wearable sensor systems that can monitor ion concentrations in human sweat to provide real time health analysis and disease diagnosis capabilities. Design/methodology/approach A human health monitoring system includes disposable customized flexible electrode array and a compact signal transmission-processing electronic unit. Findings Patterned rGO (reduced-graphene oxide) layers can replace traditional metal electrodes for the fabrication of free-standing all solid film sensors to provide improved flexibility, sensitivity, selectivity, and stability in ion concentration monitoring. Electrochemical measurements show the open circuit potential of current selective electrodes exhibit near Nernst responses versus Na+ and K+ ion concentration in sweat. These signals show great stability during a typical measurement period of 3 weeks. Sensor performances evaluated through real time measurements on human subjects show strong correlations between subject activity and sweating levels, confirming high degree of robustness, sensitivity, reliability and practicality of current sensor systems. Originality/value In improving flexibility, stability and interfacial coherency of chemical sensor arrays, rGO films have been the developed as a high-performance alternative to conventional electrode with significant cost and processing complexity reduction. rGO supported solid state electrode arrays have been found to have linear potential response versus ion concentration, suitable for electrochemical sensing applications. Current sweat sensor system has a high degree of integration, including electrode arrays, signal processing circuits, and data visualization interfaces.


2021 ◽  
Vol 73 (01) ◽  
pp. 65-66
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 197168, “Digitalize Asset-Integrity Management by Remote Monitoring,” by Mohamed Sahid, ADNOC, prepared for the 2019 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 11-14 November. The paper has not been peer reviewed. Monitoring of corrosion in process pipelines has always been of paramount importance in ensuring plant-asset integrity. Similarly, steam traps play an important role in ensuring steam quality and, thus, the integrity of critical assets in the plant. The complete paper discusses these two aspects of monitoring asset integrity - real-time corrosion monitoring and real-time steam-trap monitoring - as implemented by the operator. The authors highlight the importance of digitization by means of implementing wireless technology and making data available in remote work stations in real time. Real-Time Corrosion-Monitoring System Corrosion coupons and electrical resistance probes are among the most-tried and -tested methods to monitor corrosion, but the authors detail shortcomings of these systems, focusing their efforts on the option of using nonintrusive ultrasonic sensors for corrosion monitoring. Fixed ultrasonic thickness (UT) monitoring systems measure a localized thickness of vessel wall or pipe through the use of sound waves. They are the fastest method to measure wall thickness and wall loss reliably. The wall thickness is calculated from the reflection of the ultrasonic signal at both external and internal surfaces. UT systems normally include a transducer and a pulser/receiver. The type of transducer used for this application is the ultrasonic transducer, which can be either piezoelectric or variable-capacitive. The pulser generates short electric pulses of energy at a constant rate, which are converted by the transducer into short, high-frequency ultrasonic sound pulses. These pulses are then directed into the material. Any discontinuation or impurity in the path of the ultrasonic sound wave will be reflected and received by the transducer, transformed into an electric signal, and amplified by the receiver to be projected onto the display (in the case of portable UT instruments). Depending on the intensity shown on the display, information about the impurity or discontinuity, such as size, orientation, and location, can be derived accurately. The shortcomings of using portable UT sensors have been overcome by the introduction of permanent UT sensors, which provide wall-thickness measurement continuously at one location in real time. Because these sensors remain fixed at one location for years, it is possible to analyze corrosion at a single point over time, thus detecting early corrosion onset. Real-Time UT Gauging. The operator installed the real-time corrosion-monitoring system in its offshore associated gas (OAG) unit. A UK-based vendor provided UT sensors along with data-management and -viewing software to support data interpretation. Twenty locations were identified in various plants of the OAG unit on the basis of criticality and previously recorded corrosion levels.


2019 ◽  
Vol 11 (3) ◽  
pp. 443-452
Author(s):  
Wu Huijun ◽  
Zhan Diao ◽  
Kaizuo Fan

Purpose The purpose of this paper is to focus on the durability of underwater non-dispersible concrete in seawater environment. Design/methodology/approach In this paper, ten groups of underwater non-dispersible concrete mixtures were designed, and the anti-dispersibility and fluidity of the mixtures were tested. Findings The durability test analysis shows that different pouring methods have different effects on the durability of concrete. The durability of concrete poured on land is better than that poured in water. Different mineral admixtures have different effects on the durability of concrete: the frost resistance of the underwater non-dispersible concrete specimens with silica fume is the best; the impermeability and chloride ion permeability of the non-dispersible underwater concrete specimens with waterproofing agent are the best; and the alternation of wetting and drying has adverse effects on the durability indexes of the non-dispersible underwater concrete. Originality/value The durability of underwater non-dispersible concrete is tested and the results can be used for reference in engineering practice.


2014 ◽  
Vol 711 ◽  
pp. 481-484
Author(s):  
Yu Chen ◽  
Jie Xu ◽  
Rong Gui Liu ◽  
Su Bi Chen ◽  
Yuan Gao

Based on the existing studies about chloride ion erosion in prestressed concrete structures, this paper intends to discuss the effects of the stress level and environment factors (including temperature and humidity, etc.) on chloride ion diffusion under marine atmosphere zone. The investigation from pre-stressed concrete crossbeams which service for 39 years in Lianyungang Port shows the chloride ion concentration distribution and chloride ion diffusion. According to the chloride ion concentration distribution, it finds that chloride ion concentration values in pre-concrete structures is Cmax,1> Cmax,2. In addition, the free chloride concentration distribution values go down smoothly after the second peak. Therefore, the result shows that the improved model can be used in marine atmosphere zone.


2012 ◽  
Vol 62 ◽  
pp. 5-10 ◽  
Author(s):  
Saroj R. Tripathi ◽  
Hidehiro Ogura ◽  
Hiroyuki kawagoe ◽  
Hiroo Inoue ◽  
Tsuyoshi Hasegawa ◽  
...  

2012 ◽  
Vol 610-613 ◽  
pp. 1155-1161
Author(s):  
Gui Hong Dong ◽  
Jian Bo Xiong ◽  
Sheng Nian Wang ◽  
Zhi Hong Fan

To ensure 120 years design life of the large marine environmental engineering concrete structures in South China, and assess the status of the development of durability of concrete structure in real time w a research has been performed on embedded-non-destructive corrosion monitoring sensor systems, data acquisition and software integration, combined exposure test of concrete under environment in South China more than 30 years and laboratory test. It is a new type of technology for corrosion monitoring, assessment and early warning, which based on electrochemical principle, network transmission, expert software system, integrated the durability of the project full set of intelligent real-time monitoring and early warning expert systems.


CORROSION ◽  
1959 ◽  
Vol 15 (1) ◽  
pp. 48-54 ◽  
Author(s):  
N. D. GREENE ◽  
M. G. FONTANA

Abstract By means of a unique artificial pit specimen, pit growth on 18 percent chromium-8 percent nickel stainless steel has been measured and characterized. The effects of solution composition, agitation, atmosphere, corrosion current interruption, chloride ion concentration, and inhibitor additions have been investigated. Pit interaction during pit growth has also been determined. The autocatalytic nature of pitting has been verified, and evidence of ion screening at pit sites has been experimentally observed for the first time. 3.2.2


2021 ◽  
pp. 1-7
Author(s):  
Yasuo Wakabayashi ◽  
Mingfei Yan ◽  
Masato Takamura ◽  
Ryuutarou Ooishi ◽  
Hiroshi Watase ◽  
...  

We studied the feasibility of a portable salt-meter incorporating a prompt gamma neutron activation analysis with a californium-252 neutron source to meet urgent demands for non-destructive methods without pre-processing in large bulk materials such as concrete structures. This technique is aiming at the chloride ion concentration in concrete structures with a depth profile from the surface to steel bar. From the portability point of view, a californium-252 neutron source is adopted and we have performed a preliminary experiment and simulations with a simple geometry. In this paper, we describe the performances of salt detection sensitivities by applying the prompt gamma neutron activation analysis.


Sign in / Sign up

Export Citation Format

Share Document