Can board diversity predict the risk of financial distress?

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Umair Bin Yousaf ◽  
Khalil Jebran ◽  
Man Wang

Purpose The purpose of this study is to explore whether different board diversity attributes (corporate governance aspect) can be used to predict financial distress. This study also aims to identify what type of prediction models are more applicable to capture board diversity along with conventional predictors. Design/methodology/approach This study used Chinese A-listed companies during 2007–2016. Board diversity dimensions of gender, age, education, expertise and independence are categorized into three broad categories; relation-oriented diversity (age and gender), task-oriented diversity (expertise and education) and structural diversity (independence). The data is divided into test and validation sets. Six statistical and machine learning models that included logistic regression, dynamic hazard, K-nearest neighbor, random forest (RF), bagging and boosting were compared on Type I errors, Type II errors, accuracy and area under the curve. Findings The results indicate that board diversity attributes can significantly predict the financial distress of firms. Overall, the machine learning models perform better and the best model in terms of Type I error and accuracy is RF. Practical implications This study not only highlights symptoms but also causes of financial distress, which are deeply rooted in weak corporate governance. The result of the study can be used in future credit risk assessment by incorporating board diversity attributes. The study has implications for academicians, practitioners and nomination committees. Originality/value To the best of the authors’ knowledge, this study is the first to comprehensively investigate how different attributes of diversity can predict financial distress in Chinese firms. Further, this study also explores, which financial distress prediction models can show better predictive power.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinda Thalia Andariesta ◽  
Meditya Wasesa

PurposeThis research presents machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic using multisource Internet data.Design/methodology/approachTo develop the prediction models, this research utilizes multisource Internet data from TripAdvisor travel forum and Google Trends. Temporal factors, posts and comments, search queries index and previous tourist arrivals records are set as predictors. Four sets of predictors and three distinct data compositions were utilized for training the machine learning models, namely artificial neural networks (ANNs), support vector regression (SVR) and random forest (RF). To evaluate the models, this research uses three accuracy metrics, namely root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).FindingsPrediction models trained using multisource Internet data predictors have better accuracy than those trained using single-source Internet data or other predictors. In addition, using more training sets that cover the phenomenon of interest, such as COVID-19, will enhance the prediction model's learning process and accuracy. The experiments show that the RF models have better prediction accuracy than the ANN and SVR models.Originality/valueFirst, this study pioneers the practice of a multisource Internet data approach in predicting tourist arrivals amid the unprecedented COVID-19 pandemic. Second, the use of multisource Internet data to improve prediction performance is validated with real empirical data. Finally, this is one of the few papers to provide perspectives on the current dynamics of Indonesia's tourism demand.


2021 ◽  
Vol 9 ◽  
Author(s):  
Faiza Khurshid ◽  
Helen Coo ◽  
Amal Khalil ◽  
Jonathan Messiha ◽  
Joseph Y. Ting ◽  
...  

Bronchopulmonary dysplasia (BPD) is the most prevalent and clinically significant complication of prematurity. Accurate identification of at-risk infants would enable ongoing intervention to improve outcomes. Although postnatal exposures are known to affect an infant's likelihood of developing BPD, most existing BPD prediction models do not allow risk to be evaluated at different time points, and/or are not suitable for use in ethno-diverse populations. A comprehensive approach to developing clinical prediction models avoids assumptions as to which method will yield the optimal results by testing multiple algorithms/models. We compared the performance of machine learning and logistic regression models in predicting BPD/death. Our main cohort included infants <33 weeks' gestational age (GA) admitted to a Canadian Neonatal Network site from 2016 to 2018 (n = 9,006) with all analyses repeated for the <29 weeks' GA subcohort (n = 4,246). Models were developed to predict, on days 1, 7, and 14 of admission to neonatal intensive care, the composite outcome of BPD/death prior to discharge. Ten-fold cross-validation and a 20% hold-out sample were used to measure area under the curve (AUC). Calibration intercepts and slopes were estimated by regressing the outcome on the log-odds of the predicted probabilities. The model AUCs ranged from 0.811 to 0.886. Model discrimination was lower in the <29 weeks' GA subcohort (AUCs 0.699–0.790). Several machine learning models had a suboptimal calibration intercept and/or slope (k-nearest neighbor, random forest, artificial neural network, stacking neural network ensemble). The top-performing algorithms will be used to develop multinomial models and an online risk estimator for predicting BPD severity and death that does not require information on ethnicity.


Author(s):  
Nghia H Nguyen ◽  
Dominic Picetti ◽  
Parambir S Dulai ◽  
Vipul Jairath ◽  
William J Sandborn ◽  
...  

Abstract Background and Aims There is increasing interest in machine learning-based prediction models in inflammatory bowel diseases (IBD). We synthesized and critically appraised studies comparing machine learning vs. traditional statistical models, using routinely available clinical data for risk prediction in IBD. Methods Through a systematic review till January 1, 2021, we identified cohort studies that derived and/or validated machine learning models, based on routinely collected clinical data in patients with IBD, to predict the risk of harboring or developing adverse clinical outcomes, and reported its predictive performance against a traditional statistical model for the same outcome. We appraised the risk of bias in these studies using the Prediction model Risk of Bias ASsessment (PROBAST) tool. Results We included 13 studies on machine learning-based prediction models in IBD encompassing themes of predicting treatment response to biologics and thiopurines, predicting longitudinal disease activity and complications and outcomes in patients with acute severe ulcerative colitis. The most common machine learnings models used were tree-based algorithms, which are classification approaches achieved through supervised learning. Machine learning models outperformed traditional statistical models in risk prediction. However, most models were at high risk of bias, and only one was externally validated. Conclusions Machine learning-based prediction models based on routinely collected data generally perform better than traditional statistical models in risk prediction in IBD, though frequently have high risk of bias. Future studies examining these approaches are warranted, with special focus on external validation and clinical applicability.


Author(s):  
Chenxi Huang ◽  
Shu-Xia Li ◽  
César Caraballo ◽  
Frederick A. Masoudi ◽  
John S. Rumsfeld ◽  
...  

Background: New methods such as machine learning techniques have been increasingly used to enhance the performance of risk predictions for clinical decision-making. However, commonly reported performance metrics may not be sufficient to capture the advantages of these newly proposed models for their adoption by health care professionals to improve care. Machine learning models often improve risk estimation for certain subpopulations that may be missed by these metrics. Methods and Results: This article addresses the limitations of commonly reported metrics for performance comparison and proposes additional metrics. Our discussions cover metrics related to overall performance, discrimination, calibration, resolution, reclassification, and model implementation. Models for predicting acute kidney injury after percutaneous coronary intervention are used to illustrate the use of these metrics. Conclusions: We demonstrate that commonly reported metrics may not have sufficient sensitivity to identify improvement of machine learning models and propose the use of a comprehensive list of performance metrics for reporting and comparing clinical risk prediction models.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haoran Zhu ◽  
Lei Lei

PurposePrevious research concerning automatic extraction of research topics mostly used rule-based or topic modeling methods, which were challenged due to the limited rules, the interpretability issue and the heavy dependence on human judgment. This study aims to address these issues with the proposal of a new method that integrates machine learning models with linguistic features for the identification of research topics.Design/methodology/approachFirst, dependency relations were used to extract noun phrases from research article texts. Second, the extracted noun phrases were classified into topics and non-topics via machine learning models and linguistic and bibliometric features. Lastly, a trend analysis was performed to identify hot research topics, i.e. topics with increasing popularity.FindingsThe new method was experimented on a large dataset of COVID-19 research articles and achieved satisfactory results in terms of f-measures, accuracy and AUC values. Hot topics of COVID-19 research were also detected based on the classification results.Originality/valueThis study demonstrates that information retrieval methods can help researchers gain a better understanding of the latest trends in both COVID-19 and other research areas. The findings are significant to both researchers and policymakers.


2019 ◽  
Vol 14 (2) ◽  
pp. 97-106
Author(s):  
Ning Yan ◽  
Oliver Tat-Sheung Au

Purpose The purpose of this paper is to make a correlation analysis between students’ online learning behavior features and course grade, and to attempt to build some effective prediction model based on limited data. Design/methodology/approach The prediction label in this paper is the course grade of students, and the eigenvalues available are student age, student gender, connection time, hits count and days of access. The machine learning model used in this paper is the classical three-layer feedforward neural networks, and the scaled conjugate gradient algorithm is adopted. Pearson correlation analysis method is used to find the relationships between course grade and the student eigenvalues. Findings Days of access has the highest correlation with course grade, followed by hits count, and connection time is less relevant to students’ course grade. Student age and gender have the lowest correlation with course grade. Binary classification models have much higher prediction accuracy than multi-class classification models. Data normalization and data discretization can effectively improve the prediction accuracy of machine learning models, such as ANN model in this paper. Originality/value This paper may help teachers to find some clue to identify students with learning difficulties in advance and give timely help through the online learning behavior data. It shows that acceptable prediction models based on machine learning can be built using a small and limited data set. However, introducing external data into machine learning models to improve its prediction accuracy is still a valuable and hard issue.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2516 ◽  
Author(s):  
Changhyun Choi ◽  
Jeonghwan Kim ◽  
Jungwook Kim ◽  
Hung Soo Kim

Adequate forecasting and preparation for heavy rain can minimize life and property damage. Some studies have been conducted on the heavy rain damage prediction model (HDPM), however, most of their models are limited to the linear regression model that simply explains the linear relation between rainfall data and damage. This study develops the combined heavy rain damage prediction model (CHDPM) where the residual prediction model (RPM) is added to the HDPM. The predictive performance of the CHDPM is analyzed to be 4–14% higher than that of HDPM. Through this, we confirmed that the predictive performance of the model is improved by combining the RPM of the machine learning models to complement the linearity of the HDPM. The results of this study can be used as basic data beneficial for natural disaster management.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
D. Aytan-Aktug ◽  
P. T. L. C. Clausen ◽  
V. Bortolaia ◽  
F. M. Aarestrup ◽  
O. Lund

ABSTRACT Machine learning has proven to be a powerful method to predict antimicrobial resistance (AMR) without using prior knowledge for selected bacterial species-antimicrobial combinations. To date, only species-specific machine learning models have been developed, and to the best of our knowledge, the inclusion of information from multiple species has not been attempted. The aim of this study was to determine the feasibility of including information from multiple bacterial species to predict AMR for an individual species, since this may make it easier to train and update resistance predictions for multiple species and may lead to improved predictions. Whole-genome sequence data and susceptibility profiles from 3,528 Mycobacterium tuberculosis, 1,694 Escherichia coli, 658 Salmonella enterica, and 1,236 Staphylococcus aureus isolates were included. We developed machine learning models trained by the features of the PointFinder and ResFinder programs detected to predict binary (susceptible/resistant) AMR profiles. We tested four feature representation methods to determine the most efficient way for introducing features into the models. When training the model only on the Mycobacterium tuberculosis isolates, high prediction performances were obtained for the six AMR profiles included. By adding information on ciprofloxacin from the additional 3,588 isolates, there was no reduction in performance for the other antimicrobials but an increased performance for ciprofloxacin AMR profile prediction for Mycobacterium tuberculosis and Escherichia coli. In conclusion, the species-independent models can predict multi-AMR profiles for multiple species without losing any robustness. IMPORTANCE Machine learning is a proven method to predict AMR; however, the performance of any machine learning model depends on the quality of the input data. Therefore, we evaluated different methods of representing information about mutations as well as mobilizable genes, so that the information can serve as input for a robust model. We combined data from multiple bacterial species in order to develop species-independent machine learning models that can predict resistance profiles for multiple antimicrobials and species with high performance.


Significance It required arguably the single largest computational effort for a machine learning model to date, and is it capable of producing text at times indistinguishable from the work of a human author. This has generated considerable excitement about potentially transformative business applications -- and concerns about the system's weaknesses and possible misuse. Impacts Stereotypes and biases in machine learning models will become increasingly problematic as they are adopted by businesses and governments. The use of flawed AI tools that result in embarrassing failures risk cuts to public funding for AI research. Academia and industry face pressure to advance research into explainable AI, but progress is slow.


2017 ◽  
Vol 32 (5) ◽  
pp. 1819-1840 ◽  
Author(s):  
David John Gagne ◽  
Amy McGovern ◽  
Sue Ellen Haupt ◽  
Ryan A. Sobash ◽  
John K. Williams ◽  
...  

Abstract Forecasting severe hail accurately requires predicting how well atmospheric conditions support the development of thunderstorms, the growth of large hail, and the minimal loss of hail mass to melting before reaching the surface. Existing hail forecasting techniques incorporate information about these processes from proximity soundings and numerical weather prediction models, but they make many simplifying assumptions, are sensitive to differences in numerical model configuration, and are often not calibrated to observations. In this paper a storm-based probabilistic machine learning hail forecasting method is developed to overcome the deficiencies of existing methods. An object identification and tracking algorithm locates potential hailstorms in convection-allowing model output and gridded radar data. Forecast storms are matched with observed storms to determine hail occurrence and the parameters of the radar-estimated hail size distribution. The database of forecast storms contains information about storm properties and the conditions of the prestorm environment. Machine learning models are used to synthesize that information to predict the probability of a storm producing hail and the radar-estimated hail size distribution parameters for each forecast storm. Forecasts from the machine learning models are produced using two convection-allowing ensemble systems and the results are compared to other hail forecasting methods. The machine learning forecasts have a higher critical success index (CSI) at most probability thresholds and greater reliability for predicting both severe and significant hail.


Sign in / Sign up

Export Citation Format

Share Document