An investigation of organic mixed coolant (Palm Olein) for green machining

2014 ◽  
Vol 66 (2) ◽  
pp. 194-201 ◽  
Author(s):  
T.S. Lee ◽  
C.F. How ◽  
Y.J. Lin ◽  
T.O. Ting

Purpose – The purpose of this paper is to investigate and contribute to a better understanding of cutting process characteristics using the proposed RBD Palm Olein-based organic mixed coolant. Design/methodology/approach – In this research, refined, bleached and deodorized (RBD) Palm Olein is selected as the base oil for organic coolant and mixed coolant (base oil mixed with chemicals) to compare with the cutting performance of industrial water-soluble chemical (inorganic) coolant. Using coated carbide tool, JIS SS400 Mild Steel was tested in milling process. At fixed spindle speed, the relations between feed rate and depth of cut (DOC) on cutting temperature and surface roughness were investigated. Also, the dynamic viscosity, specific heat capacity and pH level for each coolant are taken into consideration. Findings – As predicted, cutting fluid with lower viscosity removes more heat. The cutting temperature increased with increasing feed rate and DOC. However, surface roughness increased with increasing feed rate but decreased with increasing DOC. From the data gathered, the proposed RBD Palm Olein-based organic mixed coolant showed better heat removal properties than organic coolant and it produced a far better machined surface than inorganic coolant. Originality/value – Overall, the proposed organic mixed coolant has shown great potential to be a good cutting fluid when balance between cooling properties and lubricity, and consistent quality of cutting fluids are sought to produce environmental friendly quality workpiece.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amrita Maddamasetty ◽  
Kamesh Bodduru ◽  
Siva Bevara ◽  
Rukmini Srikant Revuru ◽  
Sanjay Kumar

Purpose Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply of a small quantity of specialized coolant to the machining zone or use of a solid lubricant is a possible solution. The purpose of the present work is to improve machinability of Inconel718 using graphene nanoplatelets. Design/methodology/approach In the present study, graphene is used in the machining of Inconel 718 alloy. Graphene is applied in the following two forms: as a solid lubricant and as an inclusion in cutting fluid. Graphene-based self-lubricating tool and graphene added nanofluids are prepared and applied to turning of Inconel 718 at varying cutting velocities. Performances are compared by measuring cutting forces, cutting temperature, tool wear and surface roughness. Findings Graphene, in both forms, showed superior performance compared to dry machining. In total, 0.3 Wt.% graphene added nanofluids showed the lowest cutting tool temperature and flank wear with 44.95% and 83.37% decrease, respectively, compared to dry machining and lowest surface roughness, 0.424 times compared to dry machining at 87 m/min. Originality/value Graphene could improve the machinability of Inconel 718 when used in tools as a solid lubricant and also when used as a dispersant in cutting fluid. Graphene used as a dispersant in cutting fluid is found to be more effective.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Shahin Haghnazari ◽  
Vahid Abedini

AbstractThis paper presents an effort to model the process parameters involved in turning of alloy steel AISI 4340 workpiece material with Al2O3 and CuO hybrid nanofluids using the minimum quantity lubrication (MQL) method. In this paper, the effect of mixing two nanoparticles (Al2O3 and CuO) with different weight percent in environmentally friendly water-based cutting fluid, the rotational speed, and the feed rate has been investigated on the surface roughness and the machining forces using the response surface method. The results of the experiments show that the hybrid nanofluid containing 0.75 CuO with 0.25 Al2O3 has the best output for the machining forces and the surface roughness. Also, in the best composition of the nanoparticles (0.75 CuO with 0.25 Al2O3), the lowest value of machining forces has been achieved at a feed rate of 0.08 mm per revolution and the rotational speed 1000 rpm as well as the lowest value of the surface roughness at a feed rate of 0.08 mm per revolution and the rotational speed 710 rpm.


2019 ◽  
Vol 71 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Aqib Mashood Khan ◽  
Muhammad Jamil ◽  
Ahsan Ul Haq ◽  
Salman Hussain ◽  
Longhui Meng ◽  
...  

Purpose Sustainable machining is a global consensus and the necessity to cope up the serious environmental threats. Minimum quantity lubrication (MQL) and nanofluids-based MQL(NFMQL) are state-of-the-art sustainable lubrication modes. The purpose of this study is to investigate the effect of process parameters, such as feed rate, depth of cut and cutting fluid flow rate, on temperature and surface roughness of the manufactured pieces during face milling of the AISI D2 steel. Design/methodology/approach A statistical technique called response surface methodology with Box–Behnken Design was used to design experimental runs, and empirical modeling was presented. Analysis of variance was carried out to evaluate the model’s accuracy and the validation of the applied technique. Findings A comprehensive analysis revealed the superiority of implementing NFMQL in comparison to MQL within the levels of process parameters. The comparison has shown a significant reduction of temperature under NFMQL at the tool-workpiece interface from 16.2 to 34.5 per cent and surface roughness from 11.3 to 12 per cent. Practical implications This research is useful for practitioners to predict the responses in workshop and select appropriate cutting parameters. Moreover, this research will be helpful to reduce the resource which will ultimately save energy consumption and cost. Originality/value To cope with the industrial challenges and tribological issues associated with the milling of AISI D2 steel, experiments were conducted in a distinct machining mode with innovative cooling/lubrication. Until now, few studies have addressed the key lubrication effects of Al2O3-based nanofluid on the machinability of D2 steel under NFMQL lubrication condition.


2016 ◽  
Vol 689 ◽  
pp. 7-11 ◽  
Author(s):  
Y. Şahin ◽  
Senai Yalcinkaya

The selection of optimum machining parameters plays a significant role for the quality characteristics of products and its costs for grinding. This study describes the optimization of the grinding process for an optimal parametric combination to yield a surface roughness using the Taguchi method. An orthogonal array and analysis of variance are employed to investigate the effects of cutting environment (A), depth of cut (B) and feed rate (C) on the surface roughness characteristics of mold steels. Confirmation experiments were conducted to verify the optimal testing parameters. The experimental results indicated that the surface finish decreased with cutting-fluid and depth of cut, but decreased with increasing feed rate. It is revealed that the cutting fluid environment had highest physical as well as statistical influence on the surface roughness (71.38%), followed by depth of cut (25.54%), but the least effect was exhibited by feed rate (1.62%).


2017 ◽  
Vol 882 ◽  
pp. 13-17 ◽  
Author(s):  
E.A. Rahim ◽  
Norfazillah Talib ◽  
Amiril Sahab Abdul Sani ◽  
Samion Syahrullail ◽  
Zazuli Mohid

Sustainable manufacturing has become popular among manufacturers and industrialists due to the increase in environmental issues, health impacts and stringent law enforcement. The use of vegetable oils as metalworking fluids is one way to implement manufacturing sustainability. Palm oils are commonly used as cooking oils. Further, palm oil is also the main oil sources in Southeast Asia besides petroleum. Therefore, the potential use of palm oil as functional lubricant for future replacement of petroleum-based oil is indeed important. In this study, the refined, bleached and deodorized (RBD) palm olein has been formulated into various properties of modified RBD palm oil (MRPO) by transesterification process at different molar ratio of RBD methyl ester (FAME) with trimethylolpropane (TMP). Next, the MRPOs are compared with synthetic ester on lubrication and tribology tests according to standard based on American Society for Testing and Materials (ASTM). The results observed that MRPO have outstanding performance in lubrication and tribological behavior. MRPO2 recorded the highest viscosity index and the lowest coefficient of friction which are 496 and 0.06, respectively. MRPO2 showed to be an alternative biodegradable cutting fluid in promoting sustainable manufacturing activities by reducing the bad impact on environment and health.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2015 ◽  
Vol 761 ◽  
pp. 132-136
Author(s):  
Adnan Jameel Abbas ◽  
Mohammad Minhat ◽  
Md Nizam Abd Rahman

. The minimum cost and high productivity of the recent industrial renaissance are its main challengers. Selecting the optimum cutting parameters play a significant role in achieving these aims. Heat generated in the cutting zone area is an important factor affecting workpiece and cutting tool properties. The surface finish quality specifies product success and integrity. In this paper, the temperature generated in the cutting zone (shear zone and chip-tool interface zone) and workpiece surface roughness is optimized using an artificial immune system (AIS) intelligent algorithm. A mild steel type (S45C) workpiece and a tungsten insert cutting tool type (SPG 422) is subjected to dry CNC turning operation are used in experiments. Optimum cutting parameters (cutting velocity, depth of cut, and feed rate) calculated by the (AIS) algorithm are used to obtain the simulated and ideal cutting temperature and surface roughness. An infrared camera type (Flir E60) is used for temperature measurement, and a portable surface roughness device is used for roughness measurement. Experimental results show that the ideal cutting temperature (110°C) and surface roughness (0.49 μm) occur at (0.3 mm) cut depth, (0.06 mm) feed rate, and (60 m/min) cutting velocity. The AIS accuracy rates in finding the ideal cutting temperature and surface roughness are (91.70 %) and (90.37 %) respectively. Analysis shows that the predicted results are close to the experimental ones, indicating that this intelligent system can be used to estimate cutting temperature and surface roughness during the turning operation of mild steel.


2021 ◽  
Vol 40 (4) ◽  
pp. 648-659
Author(s):  
A.O. Osayi ◽  
S.A. Lawal ◽  
M.B. Ndaliman ◽  
J.B. Agboola

Due to the negative effects associated with the wide use of mineral oil, the desire for eco-friendly cutting fluids as alternative to mineral oil has become a global issue. In this study, rubber seed oil was used to formulate oil-in-water emulsion cutting fluid. Full factorial design was used for the formulation of the oil-in-water emulsion cutting fluid. The optimal process parameters obtained were used for the formulation of the novel cutting fluid and the cutting fluid was characterised. The characteristics of the formulated cutting fluid shows viscosity of 4.25 mm2/s, pH value of 8.3, high stability and corrosion resistant. Box-Behnken design was used for the turning operation and the performance of the rubber seed oil cutting fluid was compared with mineral oil. The input parameters were cutting speed, feed rate and depth of cut, while the responses were surface roughness and cutting temperature. Coated carbide insert was used as cutting tool. The ANOVA results show that the feed rate had the most significant effect on the surface roughness and cutting temperature followed by the cutting speed and depth of cut during the turning process. It was observed that the rubber seed oil based cutting fluid reduced surface roughness and cutting temperature by 9.79% and 1.66% respectively and therefore, it can be concluded that the rubber seed oil based cutting fluid performed better than the mineral oil in turning of mild steel.


2020 ◽  
Vol 17 (5) ◽  
pp. 661-674 ◽  
Author(s):  
Sathiyamoorthy Margabandu ◽  
Senthilkumar Subramaniam

Purpose This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites. Design/methodology/approach The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes. Findings The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev. Originality/value The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.


2016 ◽  
Vol 819 ◽  
pp. 479-483
Author(s):  
Norzahir Sapawe ◽  
Samion Syahrullail ◽  
Farizudin Muhammad

The demand and usage of vegetable oil utilization in lubricants for many applications increased prompting by continued growing environmental concerns. Today, vegetable oil attracts attention as biodegradable alternates for synthetic esters because they are cheaper and can be obtained from sources that are renewable. The main objectives of this experiment were to measure the friction force at various speeds and to observe the surface roughness before and after experiment. In this experiment, RBD palm olein as represented vegetable oil has been tested by compare the result with fully synthetic oil and mineral-based oil by using modified pin-on-disc machine. Pure RBD palm olein, recorded only 7.4% of increment of maximum friction force compared to results for mineral-based oil. Observation based on surface roughness show that RBD palm olein works as effective as fully synthetic and mineral-based oil since only 14.6% increment of overall surface roughness for the whole shaft. Therefore, the performance of vegetable oil which in this experiment is RBD palm olein, can be improve by adding additive so increase it properties such as can withstand at high load, high flash point parameter, small wear scar diameter, less oxidation rate, and coefficient of friction.


Sign in / Sign up

Export Citation Format

Share Document