A novel miniaturized Koch-Minkowski hybrid fractal antenna

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zain Ul Abidin Jaffri ◽  
Zeeshan Ahmad ◽  
Asif Kabir ◽  
Syed Sabahat Hussain Bukhari

Purpose Antenna miniaturization, multiband operation and wider operational bandwidth are vital to achieve optimal design for modern wireless communication devices. Using fractal geometries is recognized as one of the most promising solutions to attain these characteristics. The purpose of this paper is to present a unique structure of patch antenna using hybrid fractal technique to enhance the performance characteristics for various wireless applications and to achieve better miniaturization. Design/methodology/approach In this paper, the authors propose a novel hybrid fractal antenna by combining Koch and Minkowski (K-M) fractal geometries. A microstrip patch antenna (MPA) operating at 1.8 GHz is incorporated with a novel K-M hybrid fractal geometry. The proposed fractal antenna is designed and simulated in CST Microwave studio and compared with existing Koch fractal geometry. The prototype for the third iteration of the K-M fractal antenna is then fabricated on FR-4 substrate and tested through vector network analyzer for operating band/voltage standing wave ratio. Findings The third iteration of the proposed K-M fractal geometry results in achieving a 20% size reduction as compared to an ordinary MPA for the same resonant frequency with impedance bandwidth of 16.25 MHz and a directional gain of 6.48 dB, respectively. The operating frequency of MPA also lowers down to 1.44 GHz. Originality/value Further testing for the radiation patterns in an anechoic chamber shows good agreement to those of simulated results.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Gopalakrishnan Srivatsun ◽  
Sundaresan Subha Rani

A compact multiband fractal antenna which is a new criterion in communication is proposed. The optimized prototype measures 35 mm×31 mm×1.6 mm. The proposed antenna covers WLAN IEEE 802.11b, 802.15, PCS, GSM lower and higher bands, DCS, IMT, UMTS, Wi-Fi, and WLAN wireless applications. The proposed antenna exhibits multiband characteristics with anS11of−30.69 dB at design frequency and it is found that~70% of theS11graph below−10 dB reference is achieved. ExperimentalS11has been compared with the one which is obtained using method of moments. The aim of implementing self-affine fractal concept in antenna design makes it flexible in controlling the resonance and bandwidth. This paper investigates self-affine fractal geometry to miniaturize and to resonate multiband frequencies. The prototype model with a good agreement ofS11is reported.


2021 ◽  
Vol 72 (5) ◽  
pp. 306-314
Author(s):  
Zain ul Abidin Jaffri ◽  
Zeeshan Ahmad ◽  
Asif Kabir ◽  
S. Sabahat ◽  
H. Bukhari

Abstract The growing demand for enhanced capacities, broadband services, and high transmission speeds to accommodate speech, image, multimedia, and data communication simultaneously puts a requirement for antenna to operate in multiple frequency bands. A novel compact fractal antenna based on self-similar stair-shaped fractal geometry is proposed in this paper. The fractal antenna is designed by modifying the patch antenna through the iterative process using stair-shaped fractal geometry. The third iteration results in a tri-band response, and the antenna resonate at 3.65, 4.825, and 6.325 GHz with impedance bandwidths of 75.6, 121.2, and 211.4 MHz, respectively. The antenna is designed in CST Microwave studio, and evaluated for operating bands and radiation characteristics. Prototype for the third iteration of the fractal antenna is fabricated on FR-4 substrate which is further tested for measured operating bands and radiation characteristics. The simulated and measured results show good agreement.


Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 443-453 ◽  
Author(s):  
Manisha Gupta ◽  
Vinita Mathur

Abstract This paper presents the design, fabrication, and measurement of a novel ultra-wideband (UWB) hexagonal fractal patch antenna. This antenna uses hexagonal shape with Koch snowflake fractal at its edges. The proposed antenna has been excited using microstrip feed. The measured result of this antenna offers the ultra wideband characteristics from 3.265 GHz to 8.2 GHz. The antenna is practically fabricated and tested. Measured results show a good agreement with simulated results. The measured radiation patterns of this antenna are nearly omnidirectional in H-plane and bidirectional in E-plane. This antenna holds applications in many satellite communication transmissions, some Wi-Fi devices, cordless telephones, and weather radar systems. In this paper, an approach for multi-band antennas is proposed. First, a hexagonal patch is taken, it is fractured using Koch structure. The antenna shows compact dimensions with good S11 and pattern performance to be adopted for UWB applications.


Author(s):  
Shweta Rani ◽  
Sushil Kakkar

This paper focuses on the design and development of modified Koch fractal antenna. Compared to traditional Koch curve antenna, the presented antenna possesses a greater number of frequency bands and better impedance matching. Furthermore, the bacterial foraging optimization (BFO) approach is implemented to enhance the impedance bandwidth. The developed technique has been verified by employing various numerical simulations. The design parameters generated from the optimization procedure have been utilized to manufacture the antenna and the respective experimental and simulated results compared. The measured results show that the designed antenna exhibits multi and wideband behavior, covering WLAN, WIMAX, and various other wireless applications.


2015 ◽  
Vol 8 (8) ◽  
pp. 1207-1213 ◽  
Author(s):  
Sachin Kumar ◽  
Binod K. Kanaujia ◽  
Mukesh K. Khandelwal ◽  
A.K. Gautam

A single-feed dual-band circularly polarized stacked microstrip patch antenna with a small-frequency ratio is presented. Two pair of orthogonal slits is cut on the lower circular patch for achieving circular polarization and truncated corner square patch is used as the upper parasitic element. The frequency ratio of the dual-band is 1.03. The 3 dB axial ratio bandwidth is 1.3% for the upper band and 1.1% for the lower band. Proposed structure is fabricated on the FR-4 epoxy substrate and fed by SMA connector. The measured results are in good agreement with the theoretical and simulated results. The antenna shows stable radiation characteristics in both bands of operation.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Puneet Khanna ◽  
Amar Sharma ◽  
Kshitij Shinghal ◽  
Arun Kumar

A coplanar waveguide- (CPW-) fed compact wideband defected structure shaped microstrip antenna is proposed for wireless applications. Defected structure is produced by cutting theUshape antenna in the form of two-sided T shape. The proposed antenna consists of two-sidedTshape strip as compared to usual monopole patch antenna for minimizing the height of the antenna. The large space around the radiator is fully utilized as the ground is on the same plane as of radiator. Microstrip line feed is used to excite the proposed antenna placed on an FR4 substrate (dielectric constantεr=4.4). The antenna is practically fabricated and simulated. Simulated results of the proposed antenna have been obtained by using Ansoft High-Frequency Structure Simulator (HFSS) software. These results are compared with measured results by using network analyzer. Measured result shows good agreement with the simulated results. It is observed that the proposed antenna shows a wideband from 2.96 GHz to 7.95 GHz with three bands atf1=3.23 GHz,f2=4.93 GHz, andf3=7.04 GHz.


2014 ◽  
Vol 2 (3) ◽  
pp. 51 ◽  
Author(s):  
A. Kandwal ◽  
R. Sharma ◽  
S. K. Khah

A novel gap coupled dual band multiple ring antenna with a defected ground structure (DGS) has been successfully implemented. A different technique is used in this communication where both gap coupling and defected ground are applied to obtain better results for wireless applications. The designed antenna operates in two different frequency bands. The antenna shows a wideband in C-band and also resonates in the X-band. The main parameters like return loss, impedance bandwidth, radiation pattern and gain are presented and discussed. The gain is increased and the side lobe level is considerably reduced to a good extent. Designed antenna is tested and the results show that the simulation and experimental results are in good agreement with each other.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Preeti Pannu ◽  
Devendra Kumar Sharma

Purpose This paper aims to design a most demanding low profile and compact ultra-wide band (UWB) antenna system for various wireless applications. The performance (in terms of data rate) of UWB system is improved by using multiple-input-multiple-output (MIMO) technology with it. Owing to the overlap of other existing licensed bands with that of UWB, electromagnetic signals can interfere. So, notched band UWB MIMO antenna system reported here which is highly compact, bandwidth efficient, superior data rate and high inter-element isolation comparatively to other reported designs. Design/methodology/approach A 49 × 49 × 1.6 mm3 quad-port UWB MIMO antenna with specific bandwidth elimination property is designed. The proposed planar MIMO configuration comprises unique four identical “Cordate-shaped” monopole radiators fed by 2.3-mm thick microstrip-lines. The radiators are located right-angled to each other to enhance inter-element isolation. Further, a different approach of slitted-substrate is applied to minimize the overall size and mutual coupling of the MIMO antenna, as a substitute of decoupling and matching structures. The defected ground structure is used to obtain −10 dB impedance bandwidth in entire UWB band, without compromising with the lower cut-off frequency response. Further, to eliminate the undesired resonant band (WLAN at 5.5 GHz) from UWB, a rounded split ring resonator is introduced in monopole patch. Findings In the entire operating band of 2.8 to 11 GHz, isolation among elements is more than 24 dB, envelope correlation coefficient less than 0.002, diversity gain greater than 9.99 dB and TARC less than −7 dB are obtained at all 4-ports. Research limitations/implications The measured parameters of the fabricated prototype antenna on FR4 substrate are found in good agreement with the simulated results. The small variation in software results and hardware results are observed due to hardware design limitations. Practical implications The proposed design may be used for any wireless application following in the range of UWB. Originality/value It can be shown from graphs of measured parameters of the fabricated prototype antenna. They found to be in good agreement with the simulated results.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


Sign in / Sign up

Export Citation Format

Share Document