Study on laser sintering of pine/co-PES composites and the investment casting process

2019 ◽  
Vol 25 (8) ◽  
pp. 1349-1358 ◽  
Author(s):  
Hui Zhang ◽  
David Bourell ◽  
Yanling Guo ◽  
Xiaodong Zhang ◽  
Yu Zhuang ◽  
...  

Purpose A pine/co-PES composite (PCPES composite) was proposed as the feedstock for powder bed fusion (laser sintering, LS). This paper aims to provide some necessary experimental data and the theoretical foundation for LS of pine/co-PES, especially for the application of using the laser-sintered pine/co-PES parts as complex structural patterns in investment casting. Design/methodology/approach The PCPES composites with different pine loadings were mixed mechanically. The composite’s preheating temperature and processing temperature during LS were determined experimentally based on the material’s thermal behavior. The effects of pine powder on the binding mechanism of PCPES composites were discussed through analyzing the microstructure of the laser-sintered parts’. Mechanical properties and dimensional precision of laser-sintered PCPES parts in different pine loadings were tested, and the parts’ mechanical properties were strengthened by wax-infiltration post-processing. The influence extents of process parameters on the mechanical properties of laser-sintered 20 Wt.% pine/co-PES parts were investigated using a 1/2 fractional factorials experiment. Findings 20 Wt.% pine/co-PES is considered to be a promising wood-plastic composite for laser sintering. The relationship between mechanical strength of its laser-sintered parts and process parameters was built up using mathematical formulas. Experimental results show density, tensile strength, flexural strength and surface roughness of laser-sintered 20 Wt.% pine/co-PES parts are improved by 72.7-75.0%, 21.9-111.3%, 26.8-86.2%, 27.0-29.1% after post-process infiltration with a wax. A promising application of the wax-infiltrated laser-sintered parts is for investment casting cores and patterns. Research limitations/implications The proper process parameters and forming properties of laser-sintered parts are limited to the results of laser sintering experiments carried on using AFS 360 rapid prototyping device. Originality/value This investigation not only provides a new feedstock for laser sintering with the advantages of low cost and fabricability but also uses an advanced technique to produce personalized wood-plastic parts efficiently. Mathematical models between mechanical properties of laser-sintered PCPES parts and LS process parameters will guide the further LS experiments using the 20 Wt.% pine/co-PES composite. Besides, the laser-sintered PCPES parts after wax-infiltration post-processing are promising as complex structural patterns for use in investment casting.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 750
Author(s):  
Hui Zhang ◽  
David L. Bourell ◽  
Yanling Guo

This studied aimed at improving the mechanical properties for a new biopolymer feedstock using laser-sintering technology, especially when its laser-sintered parts are intended to be applied in the industrial and medical fields. Process parameter optimization and thermal post-processing are two approaches proposed in this work to improve the mechanical properties of laser-sintered 10 wt % cellulose-polylactic acid (10%-CPLA) parts. Laser-sintering experiments using 23 full factorial design method were conducted to assess the effects of process parameters on parts’ mechanical properties. A simulation of laser-energy distribution was carried out using Matlab to evaluate the experimental results. The characterization of mechanical properties, crystallinity, microstructure, and porosity of laser-sintered 10%-CPLA parts after thermal post-processing of different annealing temperatures was performed to analyze the influence of thermal post-processing on part properties. Image analysis of fracture surfaces was used to obtain the porosity of laser-sintered 10%-CPLA parts. Results showed that the optimized process parameters for mechanical properties of laser-sintered 10%-CPLA parts were laser power 27 W, scan speed 1600 mm/s, and scan spacing 0.1 mm. Thermal post-processing at 110 °C produced best properties for laser-sintered 10%-CPLA parts.


2015 ◽  
Vol 21 (6) ◽  
pp. 630-648 ◽  
Author(s):  
Sunil Kumar Tiwari ◽  
Sarang Pande ◽  
Sanat Agrawal ◽  
Santosh M. Bobade

Purpose – The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements. Design/methodology/approach – The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials. Findings – Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts. Originality/value – The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.


2020 ◽  
pp. 089270572094537
Author(s):  
Ravinder Sharma ◽  
Rupinder Singh ◽  
Ajay Batish

The polyvinylidene difluoride + barium titanate (BaTiO3) +graphene composite (PBGC) is one of the widely explored thermoplastic matrix due to its 4D capabilities. The number of studies has been reported on the process parameters of twin-screw extruder (TSE) setup (as mechanical blending technique) for the development of PBGC in 3D printing applications. But, hitherto, little has been reported on chemical-assisted mechanical blending (CAMB) as solution mixing and melt mixing technique combination for preparation of PBGC. In this work, for preparation of PBGC feedstock filaments, CAMB has been used. Also, the effect of process parameters of TSE on the mechanical, dimensional, morphological, and thermal properties of prepared filament of PBGC have been explored followed by 3D printing. Further, a comparative study has been reported for the properties of prepared filaments with mechanically blended composites. Similarly, the mechanical properties of 3D printed parts of chemically and mechanically blended composites have been compared. The results of tensile testing for CAMB of PBGC show that the filament prepared with 15% BaTiO3 is having maximum peak strength 43.00 MPa and break strength 38.73 MPa. The optical microphotographs of the extruded filaments revealed that the samples prepared at 180°C extruder temperature and 60 r/min screw speed have minimum porosity, as compared to filaments prepared at high extruder temperature. Further, the results of the comparative study revealed that the filaments of CAMB composites show better mechanical properties as compared to the filaments of mechanically mixed composites. However, the dimensional properties were almost similar in both cases. It was also found that the CAMB composites have better properties at low processing temperature, whereas mechanically blended composites show better results at a higher temperature. While comparing 3D printed parts, tensile strength of specimens fabricated from CAMB was more than the mechanically blended PBGC.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ch. Mohana Rao ◽  
K. Mallikarjuna Rao

PurposeThe objective of the paper is to evaluate the fabrication process and to study the influence of process parameters of friction stir processing of 6061-TiB2-Al2O3 Aluminum alloy surface composite on microhardness tensile strength, and microstructure.Design/methodology/approachFriction stir processing method is used for attaining the desired mechanical properties, and selectively processed reinforcements to fabricate the samples. The Taguchi technique was used to optimize rotational speed, travel speed and volume percentage of reinforcement particles to enhance the mechanical properties of 6061-TiB2-Al2O3 Aluminum alloy composite.FindingsThe fabrication of surface composites through FSP allows new inventions in terms of material with enhanced surface layers without changing the base metal.Practical implicationsTo examine the behavior of the surface of the composites in the different zones, the practical implication consists of the use of different characterization techniques like optical microscopy and scanning microscopy for microstructural behavior and the measurement of hardness and tensile tests for mechanical behavior.Originality/valueThe research work consists of tool design and process parameters, which can affect the final product (microstructural changes), and the performance of the modified surface layer behavior was studied and presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fredrick M. Mwania ◽  
Maina Maringa ◽  
Jakobus. G. van der Walt

Polymer laser sintering is an elaborate additive manufacturing technique because it is subject to process parameters and material properties. In this regard, each polymeric material necessitates a different set of process conditions. To this end, testing was done to determine the most suitable process parameters for a new commercially available polymer (Laser PP CP 60), from Diamond Plastics GmbH. It was established that the material requires slightly different settings from those provided by the supplier for the values for the removal chamber temperature, building chamber temperatures, and laser power to achieve the best mechanical properties (ultimate tensile strength). The preliminary testing indicates that the process parameters that yielded the best mechanical properties for the laser PP CP 60 powder were 125°C, 125°C, 0.15 mm, 250 μm, 4500 mm/s, 34.7 W, 1500 mm/s, and 21.3 W for the removal chamber temperature, building chamber temperature layer thickness, hatch distance, scanning speed fill, laser power fill, scanning speed contour, and laser power contour, respectively.


2015 ◽  
Vol 21 (5) ◽  
pp. 604-617 ◽  
Author(s):  
Antonio Lanzotti ◽  
Marzio Grasso ◽  
Gabriele Staiano ◽  
Massimo Martorelli

Purpose – This study aims to quantify the ultimate tensile strength and the nominal strain at break (ɛf) of printed parts made from polylactic acid (PLA) with a Replicating Rapid prototyper (Rep-Rap) 3D printer, by varying three important process parameters: layer thickness, infill orientation and the number of shell perimeters. Little information is currently available about mechanical properties of parts printed using open-source, low-cost 3D printers. Design/methodology/approach – A computer-aided design model of a tensile test specimen was created, conforming to the ASTM:D638. Experiments were designed, based on a central composite design. A set of 60 specimens, obtained from combinations of selected parameters, was printed on a Rep-Rap Prusa I3 in PLA. Testing was performed using a JJ Instruments – T5002-type tensile testing machine and the load was measured using a load cell of 1,100 N. Findings – This study investigated the main impact of each process parameter on mechanical properties and the effects of interactions. The use of a response surface methodology allowed the proposition of an empirical model which connects process parameters and mechanical properties. Even though results showed a high variability, additional ideas on how to understand the impact of process parameters are suggested in this paper. Originality/value – On the basis of experimental results, it is possible to obtain practical suggestions to set common process parameters in relation to mechanical properties. Experiments discussed in the present paper provide a variety of data and insight regarding the relationship among the main process parameters and the stiffness and strength of fused deposition modeling-printed parts made from PLA. In particular, this paper underlines the shortage in existing literature concerning the impact of process parameters on the elastic modulus and the strain to failure for the PLA. The experimental data produced show a good degree of compliance with analytical formulations and other data found in literature.


2021 ◽  
Vol 27 (2) ◽  
pp. 429-451
Author(s):  
Chrysoula Pandelidi ◽  
Tobias Maconachie ◽  
Stuart Bateman ◽  
Ingomar Kelbassa ◽  
Sebastian Piegert ◽  
...  

Purpose Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a computer-aided design model. Other benefits of technology compared to conventional manufacturing include lower cost for short runs, reduced product lead times and rapid product design. High-performance polymers such as polyetherimide, have the potential for FDM fabrication and their high-temperature capabilities provide the potential of expanding the applications of FDM parts in automotive and aerospace industries. However, their relatively high glass transition temperature (215 °C) causes challenges during manufacturing due to the requirement of high-temperature build chambers and controlled cooling rates. The purpose of this study is to investigate the mechanical properties of ULTEM 1010, an unfilled polyetherimide grade. Design/methodology/approach In this research, mechanical properties were evaluated through tensile and flexural tests. Analysis of variance was used to determine the significance of process parameters to the mechanical properties of the specimens, their main effects and interactions. The fractured surfaces were analysed by scanning electron microscopy and optical microscopy and porosity was assessed by X-ray microcomputed tomography. Findings A range of mean tensile and flexural strengths, 60–94 MPa and 62–151 MPa, respectively, were obtained highlighting the dependence of performance on process parameters and their interactions. The specimens were found to fracture in a brittle manner. The porosity of tensile samples was measured between 0.18% and 1.09% and that of flexural samples between 0.14% and 1.24% depending on the process parameters. The percentage porosity was found to not directly correlate with mechanical performance, rather the location of those pores in the sample. Originality/value This analysis quantifies the significance of the effect of each of the examined process parameters has on the mechanical performance of FDM-fabricated specimens. Further, it provides a better understanding of the effect process parameters and their interactions have on the mechanical properties and porosity of FDM-fabricated polyetherimide specimens. Additionally, the fracture surface of the tested specimens is qualitatively assessed.


2016 ◽  
Vol 22 (4) ◽  
pp. 752-765 ◽  
Author(s):  
Jatender Pal Singh ◽  
Pulak M. Pandey ◽  
Anita Kamra Verma

Purpose Scaffolds are essentially required to have open porous structure for facilitating bone to grow. They are generally placed on those bone defective/fractured sites which are more prone to compressive loading. Open porous structure lacks in strength in comparison to solid. Selective laser sintering (SLS) process is prominently used for fabrication of polymer/composite scaffolds. So, this paper aims to study for fabrication of three-dimensional open porous scaffolds with enhanced strength, process parameters of SLS of a biocompatible material are required to be optimized. Design/methodology/approach Regular open porous structures with suitable pore size as per computer-aided design models were fabricated using SLS. Polyamide (PA-2200) was used to fabricate the specimen/scaffold. To optimize the strength of the designed structure, response surface methodology was used to design the experiments. Specimens as per ASTM D695 were fabricated using SLS and compressive testing was carried out. Analysis of variance was done for estimating contribution of individual process parameters. Optimized process parameters were obtained using a trust region algorithm and correlated with experimental results. Accuracy of the fabricated specimen/scaffold was also assessed in terms of IT grades. In vitro cell culture on the fabricated structures confirmed the biocompatibility of polyamide (PA-2200). Findings Optimized process parameters for open cell process structures were obtained and confirmed experimentally. Laser power, hatch spacing and layer thickness have contributed more in the porous part’s strength than scan speed. The accuracy of the order of IT16 has been found for all functional dimensions. Cell growth and proliferation confirmed biocompatibility of polyamide (PA-2200) for scaffold applications. Originality/value This paper demonstrates the biocompatibility of PA-2200 for scaffold applications. The optimized process parameters of SLS process for open cell structure having pore size 1.2 × 1.2 mm2 with strut diameter of 1 mm have been obtained. The accuracy of the order of IT16 was obtained at the optimized process factors.


2017 ◽  
Vol 23 (6) ◽  
pp. 1099-1106 ◽  
Author(s):  
Matthias Michael Lexow ◽  
Maximilian Drexler ◽  
Dietmar Drummer

Purpose Despite the recent progress in basic process understanding considering the selective laser sintering (SLS) of thermoplastics, several aspects of the mechanisms of the beam and powder interaction are not fully understood yet. Recent studies covered the correlation of mechanical properties and part density with the heating rate. The surface roughness of the test specimens was also considered but showed no distinct relation to the part mechanics. The purpose of this paper is to provide a new fundamental model for describing the decreasing mechanical properties with increasing beam speed. Design/methodology/approach While the dependence of mechanical properties with total energy input during exposure is well published, the correlation of the exposure speed with the degree of particle melt (DPM) is the subject of the present study. The DPM is accessible through differential scanning calorimetry measurements. Supporting the previously introduced method of the core-peak height, the interpretation via the core-peak area is proposed as a means to ascertain the melting behaviour for different processing conditions. Further support of the observations is given by x-ray computed tomography and microscopy which allows for a correlation with the respective porosity and inner structure of the parts. Findings The authors show a novel way of describing the decreasing mechanical properties with increasing speed of energy input by showing the dependence of the DPM on the heating rate during exposure. Practical implications The results offer an addition to the understanding considering the reliability and reproducibility of the SLS process. Originality/value The paper extends the existing models of the time-dependent material behaviour, which allows for the derivation of new efficient and stable process strategies.


2018 ◽  
Vol 24 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Hamza Hassn Alsalla ◽  
Christopher Smith ◽  
Liang Hao

Purpose The purpose of this paper is to study new process parameters which were selected to achieve the full density of Ti-6Al-4V samples in different building orientations and investigate fracture toughness property and its relation to the microstructure, an area which has not previously been reported in full detail and which may offer information to a designer. Direct metal laser sintering (DMLS) is an additive manufacturing technique that directly manufactures three-dimensional parts, layer-by-layer, to scan and melt metal powders for aerospace applications. Design/methodology/approach Hardness and tensile tests were carried out to evaluate the effect of consolidation on the mechanical performance of specimens made at three different building directions. Optical and electron microscopy were used to characterise the microstructure of the DMLS specimens and their effects on the fractures and mechanical properties. Findings It was found that the built samples have an excellent density at 4.5 g/cm, and the sample surfaces parallel to the building direction are rougher than the perpendicular surfaces. The fracture toughness result was higher than that of the cast material for the same alloy and higher than the Ti-6Al-4V parts fabricated by electron beam melting. This results in the superior mechanical properties of DMLS, while slightly lower in the zy direction owing to cracks, porosity and surface finish. Research limitations/implications The tensile strength was found to be higher than the wrought material, and the samples exhibited brittle fractures owing to the martensitic phase, which is caused by a high temperature gradient, and the mechanical properties change with the change in the microstructures at different building directions. Originality/value This paper contains original research.


Sign in / Sign up

Export Citation Format

Share Document