Models partition for 3D printing objects using skeleton

2017 ◽  
Vol 23 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Xiaotong Jiang ◽  
Xiaosheng Cheng ◽  
Qingjin Peng ◽  
Luming Liang ◽  
Ning Dai ◽  
...  

Purpose It is a challenge to print a model with the size that is larger than the working volume of a three-dimensional (3D) printer. The purpose of this paper is to present a feasible approach to divide a large model into small printing parts to fit the volume of a printer and then assemble these parts into the final model. Design/methodology/approach The proposed approach is based on the skeletonization and the minima rule. The skeleton of a printing model is first extracted using the mesh contraction and the principal component analysis. The 3D model is then partitioned preliminarily into many smaller parts using the space sweep method and the minima rule. The preliminary partition is finally optimized using the greedy algorithm. Findings The skeleton of a 3D model can effectively represent a simplified version of the geometry of the 3D model. Using a model’s skeleton to partition the model is an efficient way. As it is generally desirable to have segmentations at concave creases and seams, the cutting position should be located in the concave region. The proposed approach can partition large models effectively to well retain the integrity of meaningful parts. Originality/value The proposed approach is new in the rapid prototyping field using the model skeletonization and the minima rule. Based on the authors’ knowledge, there is no method that concerns the integrity of meaningful parts for partitioning. The proposed method can achieve satisfactory results by the integrity of meaningful parts and assemblability for most 3D models.

2019 ◽  
Vol 25 (3) ◽  
pp. 496-514 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Rajkumar V. Patil ◽  
P.T. Perumal ◽  
...  

Purpose Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology. Design/methodology/approach In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated. Findings The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future. Originality/value This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2019 ◽  
Vol 25 (9) ◽  
pp. 1536-1544
Author(s):  
Xiangzhi Wei ◽  
Xianda Li ◽  
Shanshan Wen ◽  
Yu Zheng ◽  
Yaobin Tian

Purpose For any 3D model with chambers to be fabricated in powder-bed additive manufacturing processes such as SLM and SLS, powders are trapped in the chambers of the finished model. This paper aims to design a shortest network with the least number of outlets for efficiently leaking the trapped powders. Design/methodology/approach This paper proposes a nonlinear objective with linear constraints for solving the channel design problem and a particle swarm optimization algorithm to solve the nonlinear system. Findings Structural optimization for the channel network leads to fairly short channels in the interior of the 3D models and very few outlets on the model surface, which achieves the cleaning of the powders while causing almost the least changes to the model. Originality/value This paper reveals the NP-harness of computing the shortest channel network with the least number of outlets. The proposed approach helps the design of lightweight models using the powder-bed additive manufacturing techniques.


2020 ◽  
Vol 114 (5) ◽  
pp. 370-381
Author(s):  
Derrick W. Smith ◽  
Sandra A. Lampley ◽  
Bob Dolan ◽  
Greg Williams ◽  
David Schleppenbach ◽  
...  

Introduction: The emerging technology of three-dimensional (3D) printing has the potential to provide unique 3D modeling to support specific content in science, technology, engineering, and mathematics (STEM) education, particularly chemistry. Method: Seventeen ( n = 17) students with visual impairments were provided direct instruction on chemistry atomic orbital content and allowed to use either print or tactile graphics or 3D models in rotating order. Participants were asked specific content questions based upon the atomic orbitals. Results: The students were asked two sets of comprehension questions: general and specific. Overall, students’ responses for general questions increased per iteration regardless of which manipulative was used. For specific questions, the students answered more questions correctly when using the 3D model regardless of order. When asked about their perceptions toward the manipulatives, the students preferred the 3D model over print or tactile graphics. Discussion: The findings show the potential for 3D printed materials in learning complex STEM content. Although the students preferred the 3D models, they all mentioned that a combination of manipulatives helped them better understand the material. Implications for practitioners: Practitioners should consider the use of manipulatives that include 3D printed materials to support STEM education.


Author(s):  
E. A. Petrakova

It is known that the development of a three-dimensional parametric model is a creative process, since the same 3D-model can be built in various ways. In the article the methods for effective design of parametric 3D-models with the help of internal capabilities of CAD-program without the use of programming languages (macros) is developed. Using the methods and recommendations discussed in the article on the example of Autodesk Inventor functionality will allow the engineer to design parametric three-dimensional products in CAD-programs in the most rational way, reducing the number of errors. Recommendations for effective control of 3D-model parameters during creating of Assembly parts and 2D-drawings are given. Using the functionality discussed in the article will be useful for engineers using parametric modeling methods to create typical products, optimization and analysis of structures, development of their own database of standard products that are not in the library of CAD-program components.


2016 ◽  
Vol 116 (1) ◽  
pp. 122-146 ◽  
Author(s):  
Sangsung Park ◽  
Juhwan Kim ◽  
Hongchul Lee ◽  
Dongsik Jang ◽  
Sunghae Jun

Purpose – An increasing amount of attention is being paid to three-dimensional (3D) printing technology. The technology itself is based on diverse technologies such as laser beams and materials. Hence, 3D printing technology is a converging technology that produces 3D objects using a 3D printer. To become technologically competitive, many companies and nations are developing technologies for 3D printing. So to know its technological evolution is meaningful for developing 3D printing in the future. The paper aims to discuss these issues. Design/methodology/approach – To get technological competitiveness of 3D printing, the authors should know the most important and essential technology for 3D printing. An understanding of the technological evolution of 3D printing is needed to forecast its future technologies and build the R & D planning needed for 3D printing. In this paper, the authors propose a methodology to analyze the technological evolution of 3D printing. The authors analyze entire patent documents related to 3D printing to construct a technological evolution model. The authors use the statistical methods such as time series regression, association analysis based on graph theory, and principal component analysis for patent analysis of 3D printing technology. Findings – Using the proposed methodology, the authors show the technological analysis results of 3D printing and predict its future aspects. Though many and diverse technologies are developed and involved in 3D printing, the authors know only a few technologies take lead the technological evolution of 3D printing. In this paper, the authors find this evolution of technology management for 3D printing. Practical implications – If not all, most people would agree that 3D printing technology is one of the leading technologies to improve the quality of life. So, many companies have developed a number of technologies if they were related to 3D printing. But, most of them have not been considered practical. These were not effective research and development for 3D printing technology. In the study, the authors serve a methodology to select the specific technologies for practical used of 3D printing. Originality/value – Diverse predictions for 3D printing technology have been introduced in many academic and industrial fields. Most of them were made by subjective approaches depended on the knowledge and experience of the experts concerning 3D printing technology. So, they could be fluctuated according to the congregated expert groups, and be unstable for efficient R & D planning. To solve this problem, the authors study on more objective approach to predict the future state of 3D printing by analyzing the patent data of the developed results so far achieved. The contribution of this research is to take a new departure for understanding 3D printing technology using objective and quantitative methods.


2021 ◽  
Author(s):  
Grzegorz Świaczny

This article deals with the topic of one of the most important features of modern CAx class systems – associativity. The term refers to the ability to form relations (links) between two or more objects (in terms of their selected features), and with the consequence creating an associative (linked) three-dimensional model. The author pays special attention to the very process of creating relations between objects, as it has a key impact on the structural stability of CAD class models, and thus on their susceptibility to possible modifications. To show that not all associativity brings a positive effect, the author presents two examples of its implementation. In order to emphasize the influence of the method of linking individual elements, both examples are based on the same 3D model – a thin-walled part with a positioning pin. That means the geometric form of the default part is the same, whereas only relations of the individual objects of the 3D model change. In the first scenario, correctly defined relations between objects make that the positioning pin offset does not affect the initial design conditions. The second scenario shows an incorrect implementation of associativity, as a result of which the same operation of positioning pin offset gives non-compliance with the initial design conditions and with the consequence an undesirable change in its geometry. The article is an attempt to draw attention to the fact that the associative structure of 3D models is not always equal to the optimal solution. Only the well-thought-out nature of associativity allows to use all its advantages.


2019 ◽  
Vol 825 ◽  
pp. 19-30
Author(s):  
Tsung Chien Wu ◽  
Jiing Yih Lai ◽  
Yu Wen Tseng ◽  
Chao Yaug Liao ◽  
Ju Yi Lee

Additive manufacturing (AM) has been commonly used for the prototyping of three-dimensional (3D) models. The input model of the AM technology is a triangular model representing the surface shape of an object. The design features on a triangular model are generally not clear as the vertices are irregularly distributed. If design modification is necessary, it is difficult to segment and extract the meshes from the model. The objective of this study is to propose a method for extracting the design features on an object model by using the texture information. A 3D color model including a triangular model representing the object shape and a texture map describing the object texture is employed. The 3D model is generated by using a set of object images captured from different views surrounding the object. A texture mapping algorithm is then employed to generate the texture map corresponding to the 3D model. With both meshes and texture displayed in a texture mode, a region extraction technique is employed to extract the design features. All parts separated can then be fabricated with an AM machine, and assembled for checking the feasibility of design modification. Several products are employed to demonstrate the feasibility of the proposed technique.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 181 ◽  
Author(s):  
Dalibor Bartonek ◽  
Michal Buday

This article describes problems that occur when creating three-dimensional (3D) building models. The first problem is geometric accuracy; the next is the quality of visualization of the resulting model. The main cause of this situation is that current Computer-Aided Design (CAD) software does not have sufficient means to precision mapping the measured data of a given object in field. Therefore the process of 3D model creation is mainly a relatively high proportion of manual work when connecting individual points, approximating curves and surfaces, or laying textures on surfaces. In some cases, it is necessary to generalize the model in the CAD system, which degrades the accuracy and quality of field data. The article analyzes these problems and then recommends several variants for their solution. There are described two basic methods: using topological codes in the list of coordinates points and creating new special CAD features while using Python scripts. These problems are demonstrated on examples of 3D models in practice. These are mainly historical buildings in different locations and different designs (brick or wooden structures). These are four sacral buildings in the Czech Republic (CR): the church of saints Johns of Brno-Bystrc, the Church of St. Paraskiva in Blansko, further the Strejc’s Church in Židlochovice, and Church of St. Peter in Alcantara in Karviná city. All of the buildings were geodetically surveyed by terrestrial method while using total station. The 3D model was created in both cases in the program AUTOCAD v. 18 and MicroStation.


2019 ◽  
Vol 37 (3) ◽  
pp. 1023-1041 ◽  
Author(s):  
Tingting Zhao ◽  
Y.T. Feng ◽  
Yuanqiang Tan

Purpose The purpose of this paper is to extend the previous study [Computer Methods in Applied Mechanics and Engineering 340: 70-89, 2018] on the development of a novel packing characterising system based on principal component analysis (PCA) to quantitatively reveal some fundamental features of spherical particle packings in three-dimensional. Design/methodology/approach Gaussian quadrature is adopted to obtain the volume matrix representation of a particle packing. Then, the digitalised image of the packing is obtained by converting cross-sectional images along one direction to column vectors of the packing image. Both a principal variance (PV) function and a dissimilarity coefficient (DC) are proposed to characterise differences between different packings (or images). Findings Differences between two packings with different packing features can be revealed by the PVs and DC. Furthermore, the values of PV and DC can indicate different levels of effects on packing caused by configuration randomness, particle distribution, packing density and particle size distribution. The uniformity and isotropy of a packing can also be investigated by this PCA based approach. Originality/value Develop an alternative novel approach to quantitatively characterise sphere packings, particularly their differences.


Sign in / Sign up

Export Citation Format

Share Document