What are you printing? Ambivalent emancipation by 3D printing

2015 ◽  
Vol 21 (5) ◽  
pp. 572-581 ◽  
Author(s):  
Camille Bosqué

Purpose – The purposes of this paper are to study how entry-level 3D printers are currently being used in several shared machine shops (FabLabs, hackerspaces, etc.) and to examine the ambivalent emancipation often offered by 3D printing, when users prefer the fascinated passivity of replicating rather than the action of repairing. Based on a field study and on a large online survey, this paper offers to examine different practices with entry-level 3D printers, observed in several shared machine shops (FabLabs, hackerspaces, etc.). The recent evolution of additive manufacturing and the shift from high-end additive technologies to consumer’s entry-level 3D printing is taken as an entry point. Indeed, digital fabrication has recently received extensive media coverage and the maker movement has become a trendy subject for numerous influential publications. In the makerspaces that were taken for this field survey, 3D printers were very often used for demonstration, provoking fascination and encouraging a passive attitude. Design/methodology/approach – As part of the work for a PhD research on personal digital fabrication as practiced in FabLabs, hackerspaces and makerspaces, since 2012, a large-scale field survey at the heart of these workshops was carried out. Particular attention has been paid to the relationships established between the inhabitants of these places and their machines, observing the logic of developing projects and the reactions or techniques used to counter unforeseen obstacles – that shall be demonstrated to be an essential occurrence for these moments of production. From Paris to Amsterdam, Barcelona, Rome, Lyngen (Norway), San Francisco, New York, Boston, Tokyo, Kamakura (Japan) to Dakar, a means of observing at the heart of more than 30 makerspaces (FabLabs, hackerspaces) has been created, with the aim of looking beyond the speeches relayed by the media and to constitute an observatory of these places. The field observations are confirmed by a quantitative study, based on a survey submitted online to 170 users, coming from 30 different makerspaces in more than ten countries in the world and reached through social networks or mailing lists. This survey offers a rigorous insight on the uses of 3D printing and leads to the consideration of the types of attention applied to 3D printing and the part played by the “default” or “trivial” productions used for their demonstrations or performances. Findings – Based on both the observations and the quantitative survey, it can be discussed how the question of so-called “user-friendliness” is challenged by practices of repairing, fixing and adjusting, more than that of replicating. Indeed, it is claimed that this offers a possible meaning for 3D printing practices. In the description and analysis of the behaviours with 3D printers, this leads to privilege the idea of “disengaging” and the notion of “acting” rather than simply passively using. Originality/value – 3D printing is just one of the many options in the wide range available for personal digital fabrication. As a part of the same arsenal as laser cutters or numerical milling machines, 3D printing shares with these machines the possibility of creating objects from designs or models produced by a computer. These machines execute the instructions of operators whose practices – or behaviours – have yet to be qualified. These emerging technical situations pose a series of questions: who are those who use these 3D printers? What are they printing? What are the techniques, the gestures or the rituals imposed or offered by these machines?

2015 ◽  
Vol 21 (5) ◽  
pp. 582-597 ◽  
Author(s):  
Brett P. Conner ◽  
Guha P. Manogharan ◽  
Kerry L. Meyers

Purpose – The purpose of this paper is to examine the implementation of entry-level printers in small businesses and education to identify corresponding benefits, implications and challenges. Design/methodology/approach – Data were collected from four small businesses in northeast Ohio through survey- and interview-based feedback to develop an understanding of their use of entry-level 3D printing. Three businesses are representative of typical manufacturing-related small companies (final part fabrication-, tooling- and system-level suppliers) and the fourth company provides manufacturing-related educational tools. Corresponding learning from implementation and outcomes are assessed. Findings – Adoption of 3D printing technology was enabled through hands-on experience with entry-level 3D printers, even with their shortcomings. Entry-level 3D printing provided a workforce development opportunity to prepare small businesses to eventually work with production grade systems. Originality/value – This paper details industry-based findings on venturing into commercializing 3D printing through first-hand experiences enabled by entry-level 3D printing.


Author(s):  
Adam Brian Nulty

Introduction: The current generation of 3D printers are lighter, cheaper, and smaller, making them more accessible to the chairside digital dentist than ever before. 3D printers in general in the industrial and chairside setting can work with various types of materials including, metals, ceramics, and polymers. Evidence presented in many studies show that an ideal material used for dental restorations is characterised by several properties related to durability, cost-effectiveness, and high performance. This review is the second part in a 3D Printing series that looks at the literature on material science and applications for these materials in 3D printing as well as a discussion on the potential further development and future evolution in 3D printing materials. Conclusions: Current materials in 3D printing provide a wide range of possibilities for providing more predictable workflows as well as improving efficiency through less wasteful additive manufacturing in CAD/CAM procedures. Incorporating a 3D printer and a digital workflow into a dental practice is challenging but the wide range of manufacturing options and materials available mean that the dentist should be well prepared to treat patients with a more predictable and cost effective treatment pathway. As 3D printing continues to become a commonplace addition to chair side dental clinics, the evolution of these materials, in particular reinforced PMMA, resin incorporating zirconia and glass reinforced polymers offer increased speed and improved aesthetics that will likely replace subtractive manufacturing milling machines for most procedures.


2017 ◽  
Vol 23 (6) ◽  
pp. 1020-1031 ◽  
Author(s):  
Miguel Fernandez-Vicente ◽  
Ana Escario Chust ◽  
Andres Conejero

Purpose The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills. Design/methodology/approach The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method. Findings The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients. Social implications The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators. Originality/value Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.


2021 ◽  
Vol 40 (2) ◽  
pp. 5-12
Author(s):  
Stepan A. Peleshok ◽  
Aleksandr Ya. Fisun ◽  
Andrey V. Morozov ◽  
Sergey V. Kalinin ◽  
Marina I. Eliseeva

In order to determine the features and main ways of using additive technologies within the framework of the scientific and business program of the International Military-Technical Forum Army-2020, a round table was held. In recent years, additive technologies have made a significant leap forward thanks to the improvement of electronic computing technology and software (software), the creation of a wide range of 3D printers that print using various modern methods and materials. The following industries are leading in the development of 3D printing as consumers: aircraft construction (33%), nuclear industry (30%), military-industrial complex (13%), as well as medicine (11%), education, etc. The summary contains part of the speeches of the speakers of the scientific event on the use of additive technologies in education and medicine. To achieve Russias position as one of the leaders in the global technology market, a network of educational institutions is developing and the provision of educational institutions with 3D printers. The countrys universities and, in particular, Bauman Moscow State Technical University began to develop professional competencies among graduates in the field of additive technologies, materials and equipment. Other universities use reverse engineering for research and development, the launch of new production. In medicine, models of complex elements of the human skeleton are created, in particular, individual bones and various projections of the skull, bones of the spine, hand and foot, as well as some models of organs from hard and semi-soft plastics to improve the educational process. The capabilities of 3D printing of mock-ups of organ pathologies are used for preoperative planning and rehearsal of an operation in thoracic and cardiovascular surgery, as well as for training students and doctors, modeling hemodynamics and testing medical devices. Alternative materials and methods for making splints and splints for fixing injuries and diseases of the upper limb are considered. To create ceramic products in dentistry, instead of injection molding and pressing, the technology of Lithography-based Ceramics Manufacturing printing with a suspension on foreign equipment was proposed. Three-dimensional printing has partially filled the need for personal protective equipment against the new coronavirus infection, in particular through the creation of reusable masks, various adapters, holders of face masks, linings on door handles, etc. The participants of the round table agreed that the results of scientific and innovative activities in the field of additive technologies should be tested, implemented and used in the educational process, practical activities, including military medicine (bibl.: 6 refs).


2017 ◽  
Vol 33 (4) ◽  
pp. 324-338 ◽  
Author(s):  
Sarah K. Coombs ◽  
Isabella Peters

PurposeThe purpose of this paper is to provide a critical discussion of the Leiden Manifesto for libraries already engaged in bibliometric practices. It offers practical recommendations based on the work of the European Association for Research Libraries (LIBER) Working Group on Metrics. This work is in the beginning phase and summarizes literature on the topic, as well as the experiences of the members of the Working Group. The discussion reflects today's growing popularity of (quantitative) research assessment which is seen in enthusiasts introducing new metrics (i.e. altmetrics) and by critics demanding responsible metrics that increase objectivity and equity in evaluations. Design/methodology/approachThis paper is the result of the Working Group on Metrics of the European Association for Research Libraries (LIBER) that critically discussed the practicality of the Leiden Manifesto for libraries. FindingsFull compliance with the Manifesto is time-consuming, expensive and requires a significant increase in bibliometric expertise with respect to both staffing and skill level. Despite these apparent disadvantages, it is recommended that all libraries embrace the Manifesto’s principles. To increase practicality, it is advised that libraries collaborate with researchers, management and other libraries at home and around the world to jointly design and provide services that can be reused within the library community. Originality/valueLibraries have increasingly been confronted with questions about research assessment, responsible metrics and the role of digital products in evaluations and funding decisions. Although a wide range of recommendations and initiatives are available (e.g. DORA San Francisco Declaration on Research Assessment), many recommendations are not straightforward enough to be implemented from a library perspective. This paper provides assistance for libraries to implement these principles by acknowledging the heterogeneous backgrounds the libraries may stem from.


2015 ◽  
Vol 21 (5) ◽  
pp. 618-627 ◽  
Author(s):  
Garrett W. Melenka ◽  
Jonathon S. Schofield ◽  
Michael R. Dawson ◽  
Jason P. Carey

Purpose – This paper aims to evaluate the material properties and dimensional accuracy of a MakerBot Replicator 2 desktop 3D printer. Design/methodology/approach – A design of experiments (DOE) test protocol was applied to determine the effect of the following variables on the material properties of 3D printed part: layer height, per cent infill and print orientation using a MakerBot Replicator 2 printer. Classical laminate plate theory was used to compare results from the DOE experiments with theoretically predicted elastic moduli for the tensile samples. Dimensional accuracy of test samples was also investigated. Findings – DOE results suggest that per cent infill has a significant effect on the longitudinal elastic modulus and ultimate strength of the test specimens, whereas print orientation and layer thickness fail to achieve significance. Dimensional analysis of test specimens shows that the test specimen varied significantly (p < 0.05) from the nominal print dimensions. Practical implications – Although desktop 3D printers are an attractive manufacturing option to quickly produce functional components, this study suggests that users must be aware of this manufacturing process’ inherent limitations, especially for components requiring high geometric tolerance or specific material properties. Therefore, higher quality 3D printers and more detailed investigation into the MakerBot MakerWare printing settings are recommended if consistent material properties or geometries are required. Originality/value – Three-dimensional (3D) printing is a rapidly expanding manufacturing method. Initially, 3D printing was used for prototyping, but now this method is being used to create functional final products. In recent years, desktop 3D printers have become commercially available to academics and hobbyists as a means of rapid component manufacturing. Although these desktop printers are able to facilitate reduced manufacturing times, material costs and labor costs, relatively little literature exists to quantify the physical properties of the printed material as well as the dimensional consistency of the printing processes.


2018 ◽  
Vol 12 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Woojin Cho ◽  
Alan Varkey Job ◽  
Jing Chen ◽  
Jung Hwan Baek

<p>Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.</p>


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 91
Author(s):  
Bruce W. Jo ◽  
Christina Soyoung Song

With the advancement of additive manufacturing technologies in their material processing methodologies and variety of material selection, 3D printers are widely used in both academics and industries for various applications. It is no longer rare to have a portable and small desktop 3D printer and manufacture your own designs in a few hours. Desktop 3D printers vary in their functions, prices, materials used, and applications. Among many desktop 3D printers with various features, it is often challenging to select the best one for target applications and usages. In this paper, commercially available and carefully selected thermoplastic and photopolymer desktop 3D printers are introduced, and some representative models’ specifications and performances are compared with each other for user selection with respect to instructional applications. This paper aims to provide beginner-level or advanced-level end-users of desktop 3D printers with basic knowledge, selection criteria, a comprehensive overview of 3D printing technologies, and their technical features, helping them to evaluate and select the right 3D printers for a wide range of applications.


Author(s):  
Aaron D. Knochel

Artist educators work in a great diversity of locations from informal community spaces to formal learning spaces in schools and museums. Art educators are exploring modes of transdisciplinary curriculum connecting art to science, technology, engineering, and math (STEAM) to meet the diverse challenges of making and learning. One of the roadblocks to maker forms of education is access to digital fabrication technologies such as 3D printers. To bring digital fabrication to a wider range of arts learning contexts, I designed a mini mobile makerspace that focused on 3D printing that I am calling a DigiFab Kit. As an extension of the concept of the FabLab Classroom model, I share my design decisions and experience of 3D printing in a mobile framework. My development of DigiFab Kits is an exploration of curated object collections that deploy as mobile makerspaces with adaptable curricular concepts appropriate to technology that can be used anywhere there is electricity.


Author(s):  
Marcos García Reyes ◽  
Alex Bataller Torras ◽  
Juan A. Cabrera Carrillo ◽  
Juan M. Velasco García ◽  
Juan J. Castillo Aguilar

AbstractIn the last years, a large number of new biocompatible materials for 3D printers have emerged. Due to their recent appearance and rapid growth, there is little information about their mechanical properties. The design and manufacturing of oral appliances made with 3D printing technologies require knowledge of the mechanical properties of the biocompatible material used to achieve optimal performance for each application. This paper focuses on analysing the mechanical behaviour of a wide range of biocompatible materials using different additive manufacturing technologies. To this end, tensile and bending tests on different types of recent biocompatible materials used with 3D printers were conducted to evaluate the influence of the material, 3D printing technology, and printing orientation on the fragile/ductile behaviour of the manufactured devices. A test bench was used to perform tensile tests according to ASTM D638 and bending tests according to ISO 178. The specimens were manufactured with nine different materials and five manufacturing technologies. Furthermore, specimens were created with different printing technologies, biocompatible materials, and printing orientations. The maximum allowable stress, rupture stress, flexural modulus, and deformation in each of the tested specimens were recorded. Results suggest that specimens manufactured with Stereolithography (SLA) and milling (polymethyl methacrylate PMMA) achieved high maximum allowable and rupture stress values. It was also observed that Polyjet printing and Selective Laser Sintering technologies led to load–displacement curves with low maximum stress and high deformation values. Specimens manufactured with Digital Light Processing technology showed intermediate and homogeneous performance. Finally, it was observed that the printing direction significantly influences the mechanical properties of the manufactured specimens in some cases.


Sign in / Sign up

Export Citation Format

Share Document