Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer

2015 ◽  
Vol 21 (5) ◽  
pp. 618-627 ◽  
Author(s):  
Garrett W. Melenka ◽  
Jonathon S. Schofield ◽  
Michael R. Dawson ◽  
Jason P. Carey

Purpose – This paper aims to evaluate the material properties and dimensional accuracy of a MakerBot Replicator 2 desktop 3D printer. Design/methodology/approach – A design of experiments (DOE) test protocol was applied to determine the effect of the following variables on the material properties of 3D printed part: layer height, per cent infill and print orientation using a MakerBot Replicator 2 printer. Classical laminate plate theory was used to compare results from the DOE experiments with theoretically predicted elastic moduli for the tensile samples. Dimensional accuracy of test samples was also investigated. Findings – DOE results suggest that per cent infill has a significant effect on the longitudinal elastic modulus and ultimate strength of the test specimens, whereas print orientation and layer thickness fail to achieve significance. Dimensional analysis of test specimens shows that the test specimen varied significantly (p < 0.05) from the nominal print dimensions. Practical implications – Although desktop 3D printers are an attractive manufacturing option to quickly produce functional components, this study suggests that users must be aware of this manufacturing process’ inherent limitations, especially for components requiring high geometric tolerance or specific material properties. Therefore, higher quality 3D printers and more detailed investigation into the MakerBot MakerWare printing settings are recommended if consistent material properties or geometries are required. Originality/value – Three-dimensional (3D) printing is a rapidly expanding manufacturing method. Initially, 3D printing was used for prototyping, but now this method is being used to create functional final products. In recent years, desktop 3D printers have become commercially available to academics and hobbyists as a means of rapid component manufacturing. Although these desktop printers are able to facilitate reduced manufacturing times, material costs and labor costs, relatively little literature exists to quantify the physical properties of the printed material as well as the dimensional consistency of the printing processes.

2015 ◽  
Vol 21 (5) ◽  
pp. 582-597 ◽  
Author(s):  
Brett P. Conner ◽  
Guha P. Manogharan ◽  
Kerry L. Meyers

Purpose – The purpose of this paper is to examine the implementation of entry-level printers in small businesses and education to identify corresponding benefits, implications and challenges. Design/methodology/approach – Data were collected from four small businesses in northeast Ohio through survey- and interview-based feedback to develop an understanding of their use of entry-level 3D printing. Three businesses are representative of typical manufacturing-related small companies (final part fabrication-, tooling- and system-level suppliers) and the fourth company provides manufacturing-related educational tools. Corresponding learning from implementation and outcomes are assessed. Findings – Adoption of 3D printing technology was enabled through hands-on experience with entry-level 3D printers, even with their shortcomings. Entry-level 3D printing provided a workforce development opportunity to prepare small businesses to eventually work with production grade systems. Originality/value – This paper details industry-based findings on venturing into commercializing 3D printing through first-hand experiences enabled by entry-level 3D printing.


Author(s):  
Luiz Renato Rodrigues Carneiro ◽  
José Jean-Paul Zanlucchi de Souza Tavares

Nowadays 3D printing is a hot topic and this was specially observed during the COVID-19 pandemic. Hence, this project has the objective to present the design and implementation of a 3D printer, which fits the Mechanical Engineering Courses requisites. The founded solution follows the Delta architecture and it was called Delta MAPL. This paper will summarize all important definitions and knowledge to build a 3D printer such as, 3D printers technologies and architectures, expose the developed project involving mechanic and electric project, project cost, programming and slicer, calibration, printing parameters, and will also expose de results through implementation of the project, 3D printing tests, and also the documentation with all design parts, codes and printing parameters. Therefore, 3D printer is very useful and involving many fields of Mechanical Engineering knowledge, thus 3D printing develops not only knowledge in mechanic, electric, sensors and actuators and material properties, but also creativity and problem-solving that are so important for all engineering students.


2018 ◽  
Vol 2 (94) ◽  
pp. 65-75 ◽  
Author(s):  
T.D. Dikova ◽  
D.A. Dzhendov ◽  
D. Ivanov ◽  
K. Bliznakova

Purpose: To compare the dimensions accuracy and surface roughness of polymeric dental bridges produced by different 3D printers. Design/methodology/approach: Four-part dental bridges were manufactured by three printing systems working on the basis of digital light projection (DLP) stereolithography (SLA), laser-assisted SLA and fused deposition modeling (FDM). The materials used from SLA printers are liquid methacrylate photopolymer resins, while FDM printer use thin wire plastic polylactic acid. The accuracy of the external dimensions of dental bridges was evaluated and the surface roughness was measured. Findings: It was found that compared to the base model, the dimensions of the SLA printed bridges are bigger with 1.25%-6.21%, while the corresponding dimensions of the samples, made by FDM are smaller by 1.07%-4.71%, regardless the position of the object towards the substrate. The samples, produced by FDM, are characterized with the highest roughness. The average roughness deviation (Ra) values for DLP SLA and lase-assisted SLA are 2.40 μm and 2.97 μm, respectively. Research limitations/implications: For production of high quality polymeric dental constructions next research should be targeted to investigation of the polymerization degree, stresses and deformations. Practical implications: Our study shows that 3D printers, based on laser-assisted and DLP SLA, can be successfully used for manufacturing of polymeric dental bridges – temporary restorations or cast patterns, while FDM system is more suitable for training models. The results will help the dentists to make right choice of the most suitable 3D printer. Originality/value: One of the largest fixed partial dentures – four-part bridges, produced by three different commercial 3D printing systems, were investigated by comparative analysis. The paper will attract readers’ interest in the field of biomedical materials and application of new technologies in dentistry.


2015 ◽  
Vol 21 (5) ◽  
pp. 572-581 ◽  
Author(s):  
Camille Bosqué

Purpose – The purposes of this paper are to study how entry-level 3D printers are currently being used in several shared machine shops (FabLabs, hackerspaces, etc.) and to examine the ambivalent emancipation often offered by 3D printing, when users prefer the fascinated passivity of replicating rather than the action of repairing. Based on a field study and on a large online survey, this paper offers to examine different practices with entry-level 3D printers, observed in several shared machine shops (FabLabs, hackerspaces, etc.). The recent evolution of additive manufacturing and the shift from high-end additive technologies to consumer’s entry-level 3D printing is taken as an entry point. Indeed, digital fabrication has recently received extensive media coverage and the maker movement has become a trendy subject for numerous influential publications. In the makerspaces that were taken for this field survey, 3D printers were very often used for demonstration, provoking fascination and encouraging a passive attitude. Design/methodology/approach – As part of the work for a PhD research on personal digital fabrication as practiced in FabLabs, hackerspaces and makerspaces, since 2012, a large-scale field survey at the heart of these workshops was carried out. Particular attention has been paid to the relationships established between the inhabitants of these places and their machines, observing the logic of developing projects and the reactions or techniques used to counter unforeseen obstacles – that shall be demonstrated to be an essential occurrence for these moments of production. From Paris to Amsterdam, Barcelona, Rome, Lyngen (Norway), San Francisco, New York, Boston, Tokyo, Kamakura (Japan) to Dakar, a means of observing at the heart of more than 30 makerspaces (FabLabs, hackerspaces) has been created, with the aim of looking beyond the speeches relayed by the media and to constitute an observatory of these places. The field observations are confirmed by a quantitative study, based on a survey submitted online to 170 users, coming from 30 different makerspaces in more than ten countries in the world and reached through social networks or mailing lists. This survey offers a rigorous insight on the uses of 3D printing and leads to the consideration of the types of attention applied to 3D printing and the part played by the “default” or “trivial” productions used for their demonstrations or performances. Findings – Based on both the observations and the quantitative survey, it can be discussed how the question of so-called “user-friendliness” is challenged by practices of repairing, fixing and adjusting, more than that of replicating. Indeed, it is claimed that this offers a possible meaning for 3D printing practices. In the description and analysis of the behaviours with 3D printers, this leads to privilege the idea of “disengaging” and the notion of “acting” rather than simply passively using. Originality/value – 3D printing is just one of the many options in the wide range available for personal digital fabrication. As a part of the same arsenal as laser cutters or numerical milling machines, 3D printing shares with these machines the possibility of creating objects from designs or models produced by a computer. These machines execute the instructions of operators whose practices – or behaviours – have yet to be qualified. These emerging technical situations pose a series of questions: who are those who use these 3D printers? What are they printing? What are the techniques, the gestures or the rituals imposed or offered by these machines?


Author(s):  
Ce Shi ◽  
Lin Zhang ◽  
Jingeng Mai ◽  
Zhen Zhao

The distributed and customized 3D printing can be realized by 3D printing services in a cloud manufacturing environment. As a growing number of 3D printers are becoming accessible on various 3D printing service platforms, there raises the concern over the validation of virtual product designs and their manufacturing procedures for novices as well as users with 3D printing experience before physical products are produced through the cloud platform. This paper presents a 3D model to help users validate their designs and requirements not only in the traditional digital 3D model properties like shape and size, but also in physical material properties and manufacturing properties when producing physical products like surface roughness, print accuracy and part cost. These properties are closely related to the process of 3D printing and materials. In order to establish the 3D model, the paper analyzes the model of the 3D printing process selection in the cloud platform. Triangular intuitionistic fuzzy numbers are applied to generate a set of 3D printers with the same process and material. Based on the 3D printing process selection model, users can establish the 3D model and validate their designs and requirements on physical material properties and manufacturing properties before printing physical products.


2016 ◽  
Vol 27 (7) ◽  
pp. 990-1012 ◽  
Author(s):  
Harm-Jan Steenhuis ◽  
Leon Pretorius

Purpose The purpose of this paper is to explore what underlies the development of the consumer 3D printing industry and gain insight into future developments and its potentially disruptive impact on the existing manufacturing industry. Design/methodology/approach A combination of approaches was followed. Initially a consumer 3D printer was purchased to gain first-hand experience as part of a practical research case study. Results were discussed with manufacturers and additional information was sought, and triangulated, via a survey and an exploratory bibliometric study. Findings Many characteristics are in place to identify consumer 3D printing as a potential disruptive technology for the manufacturing industry. For example, the cost of consumer 3D printing is lower than for traditional manufacturing. However, the current adoption rate is low and the user friendliness and technological capabilities need to improve. Research limitations/implications The main limitation is the exploratory nature of the study which does not allow generalizations. Practical implications If developments and adoption patterns continue, then traditional manufacturing industries, distribution channels and the transportation sector may become threatened. Social implications Technological advances in consumer manufacturing can potentially threaten several economic sectors, which can lead to loss of jobs and affect budgets of states of countries that depend on sales tax. Originality/value One of the first studies to employ experiments in combination with other methods to gain insight into adoption patterns and the disruptive nature of consumer 3D printers specifically, rather than industrial 3D printers or new business models as a result of 3D printing technology.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Asif Ur Rehman ◽  
Vincenzo M. Sglavo

Purpose Recent advances in 3D printing construction elements have focused on ordinary Portland cement (OPC) concrete using polymeric binders; herein, this study aims to produce the same using pure water. Design/methodology/approach A binder jet printer prototype was used to fabricate specimens that are used to assess geometric and mechanical properties. Two distinct water-based binder formulations, compatible with OPC chemistry and piezoelectric jetting device, were used: pure water and water-polyvinyl alcohol (98:2 w/w) solution. Findings This study examines the effect of binder flow rate on dimensional accuracy. Furthermore, the changes in the mechanical properties over time with hydration have been investigated. Practical implications Results indicate that the increase in mechanical strength of Portland cement concrete with pure water was consistent; however, it was delayed by the water: PVA (98:2 w/w) solution. Post-curing by water vapor hardened the structure with the removal of layering native to 3DP and decreased infilling porosity by diffusion mechanism. Originality/value This paper has used pure water jetting for BJT of Portland cement-containing bodies.


2014 ◽  
Vol 32 (4) ◽  
pp. 583-593 ◽  
Author(s):  
Heather Michele Moorefield-Lang

Purpose – The purpose of this paper is to describe the implementation of 3D printing and maker spaces in various library settings. Insights, challenges, successes, projects as well as recommendations will be shared. Commonalities across libraries 3D printing technologies and maker space learning areas will also explored. Design/methodology/approach – This paper delves into six case studies of librarians that have implemented 3D printers and/or maker spaces in their libraries. The case studies focus on libraries at three different levels: school, public, and higher education with two case studies from each type. The author of this paper will describe the cases, projects, challenges, successes, along with other aspects of 3D printer, and maker space integration. Findings – 3D printing and maker spaces, while very popular in the field of librarianship can be incredibly exciting to implement but they come with challenges and successes just like any type of new technology. Librarians have to be fearless in implementing this technology, willing to learn on their feet, and be excited to explore. Originality/value – At this time most publications on 3D printing are held in the realm of popular publications (blogs, magazines, zines, etc.). Very little has been written on a wider range of case studies where 3D printers and maker spaces have been integrated into libraries of various types. This paper sets the foundation for further exploration in how 3D printing and maker spaces could be a part of library services.


2018 ◽  
Vol 24 (9) ◽  
pp. 1436-1446 ◽  
Author(s):  
Jace McPherson ◽  
Wenchao Zhou

Purpose The purpose of this research is to develop a new slicing scheme for the emerging cooperative three-dimensional (3D) printing platform that has multiple mobile 3D printers working together on one print job. Design/methodology/approach Because the traditional lay-based slicing scheme does not work for cooperative 3D printing, a chunk-based slicing scheme is proposed to split the print job into chunks so that different mobile printers can print different chunks simultaneously without interfering with each other. Findings A chunk-based slicer is developed for two mobile 3D printers to work together cooperatively. A simulator environment is developed to validate the developed slicer, which shows the chunk-based slicer working effectively, and demonstrates the promise of cooperative 3D printing. Research limitations/implications For simplicity, this research only considered the case of two mobile 3D printers working together. Future research is needed for a slicing and scheduling scheme that can work with thousands of mobile 3D printers. Practical implications The research findings in this work demonstrate a new approach to 3D printing. By enabling multiple mobile 3D printers working together, the printing speed can be significantly increased and the printing capability (for multiple materials and multiple components) can be greatly enhanced. Social implications The chunk-based slicing algorithm is critical to the success of cooperative 3D printing, which may enable an autonomous factory equipped with a swarm of autonomous mobile 3D printers and mobile robots for autonomous manufacturing and assembly. Originality/value This work presents a new approach to 3D printing. Instead of printing layer by layer, each mobile 3D printer will print one chunk at a time, which provides the much-needed scalability for 3D printing to print large-sized object and increase the printing speed. The chunk-based approach keeps the 3D printing local and avoids the large temperature gradient and associated internal stress as the size of the print increases.


2020 ◽  
Vol 14 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Ingo Karl Bosse ◽  
Bastian Pelka

Purpose People with disabilities (PWD) produce aids using 3D printing in an inclusive MakerSpace in Germany. This study aims to demonstrate the pathways enabling people with disabilities to be “makers” of aids, creating a “medium-quality market”. Design/methodology/approach This study conceptualizes the foundation of the MakerSpace as a social innovation and traces supporting and hindering factors on three different layers: normative, structural and functional contexts. Findings 3D printing can empower PWD to design and construct aids by themselves. The emerging “medium-quality” market offers potentials for availability for individualized aids. The design-thinking method used and the developed scalable approach empower PWD to create aids that best meet their own needs. The study found three arguments for printing aids that involve 3D printers: “New”: objects that are not available without a 3D printer. “Better”: objects that are available through established channels but were produced either more cheaply, quickly or on a more individualized level. “More”: objects that are available through other channels, but where 3D printing allows more of them to be produced for more people. Research limitations/implications The qualitative study has limitations because of sample size and context dependency. Research has only been carried out in Germany. Future research should be conducted in other countries to generalize the results. Practical implications The article allows to understand the emergence of a new market for aids. It can steer producers (including PWD or sheltered workshops) in producing new aids and making them available to more people. Social implications Understanding the functioning of the “new market for aids” can boost the accessibility of aids. Empowering PWD to produce aids can support their independence, self-determination and self-esteem. Supporting PWD to become producers of aids can support them in becoming experts and boost the quality and availability of aids. Originality/value All data presented has been collected by the authors.


Sign in / Sign up

Export Citation Format

Share Document