All-wet TSV filling with highly adhesive displacement plated Cu seed layer

Author(s):  
Kohei Ohta ◽  
Atsushi Hirate ◽  
Yuto Miyachi ◽  
Tomohiro Shimizu ◽  
Shoso Shingubara
Keyword(s):  
1996 ◽  
Vol 451 ◽  
Author(s):  
R. Amster ◽  
B. Johnson ◽  
L. S. Vanasupa
Keyword(s):  

ABSTRACTWe studied the nucleation of Cu deposited by an electroless bath. A Pd seed layer was sputtered onto a (100) Si substrate and analyzed with GIX, STM, and AFM. The seed layer was then placed in varying ED-Cu bath conditions and also analyzed using GIX, STM, and AFM. GIX analysis results show a (111) texture for the Pd seed layer as well as the ED-Cu layer. The seed layer's influence on the deposited Cu grain's texture was found to be inconclusive.


Author(s):  
Wen-Fei Hsieh ◽  
Shih-Hsiang Tseng ◽  
Bo Min She

Abstract In this study, an FIB-based cross section TEM sample preparation procedure for targeted via with barrier/Cu seed layer is introduced. The dual beam FIB with electron beam for target location and Ga ion beam for sample milling is the main tool for the targeted via with barrier/Cu seed layer inspection. With the help of the FIB operation and epoxy layer protection, ta cross section TEM sample at a targeted via with barrier/Cu seed layer could be made. Subsequent TEM inspection is used to verify the quality of the structure. This approach was used in the Cu process integration performance monitor. All these TEM results are very helpful in process development and yield improvement.


2021 ◽  
Vol 52 (S1) ◽  
pp. 170-174
Author(s):  
Hennrik Schmidt ◽  
Harald Koestenbauer ◽  
Dominik Lorenz ◽  
Christian Linke ◽  
Enrico Franzke ◽  
...  

2021 ◽  
Vol 27 ◽  
pp. 100819
Author(s):  
Zhiqiang Lai ◽  
Tao Zhao ◽  
Pengli Zhu ◽  
Jing Xiang ◽  
Dan Liu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1433
Author(s):  
Taoufik Slimani Tlemcani ◽  
Camille Justeau ◽  
Kevin Nadaud ◽  
Daniel Alquier ◽  
Guylaine Poulin-Vittrant

Flexible piezoelectric nanogenerators (PENGs) are very attractive for mechanical energy harvesting due to their high potential for realizing self-powered sensors and low-power electronics. In this paper, a PENG that is based on zinc oxide (ZnO) nanowires (NWs) is fabricated on flexible and transparent Polydimethylsiloxane (PDMS) substrate. The ZnO NWs were deposited on two different seed layer structures, i.e., gold (Au)/ZnO and tin-doped indium-oxide (ITO)/ZnO, using hydrothermal synthesis. Along with the structural and morphological analyses of ZnO NWs, the electrical characterization was also investigated for ZnO NWs-based flexible PENGs. In order to evaluate the suitability of the PENG device structure, the electrical output performance was studied. By applying a periodic mechanical force of 3 N, the ZnO NWs-based flexible PENG generated a maximum root mean square (RMS) voltage and average power of 2.7 V and 64 nW, respectively. Moreover, the comparison between the fabricated device performances shows that a higher electrical output can be obtained when ITO/ZnO seed layer structure is adopted. The proposed ZnO NWs-based PENG structure can provide a flexible and cost-effective device for supplying portable electronics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshitake Masuda

AbstractCold crystallization of SnO2 was realized in aqueous solutions, where crystal growth was controlled to form SnO2 (101) nanosheet assembled films for devices such as chemical sensors. The nanosheets grew directly on a fluorine-doped tin oxide substrate without a seed layer or a buffer layer. The nanosheets had a thickness of 5–10 nm and an in-plane size of 100–1600 nm. Moreover, the large flat surface of the (101) facet was metastable. The thickness of the SnO2 (101) nanosheet assembled film was approximately 800 nm, and the film had a gradient structure that contained many connected nanosheets. TEM results revealed that the predominate branch angles between any two connected nanosheets were 90° and 46.48°, corresponding to type I and type II connections, respectively. These connections were consistent with the calculations based on crystallography. Crystallographic analysis clarified the characteristic crystal growth of the SnO2 (101) nanosheet assembled film in the aqueous solution. Furthermore, we demonstrate that the metastable (101) facet can be exploited to control the rate of crystal growth by adjusting the etching condition.


2016 ◽  
Vol 42 (13) ◽  
pp. 14788-14792 ◽  
Author(s):  
Y.L. Zhang ◽  
W.L. Li ◽  
W.P. Cao ◽  
T.D. Zhang ◽  
T.R.G.L. Bai ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jose Recatala-Gomez ◽  
Pawan Kumar ◽  
Ady Suwardi ◽  
Anas Abutaha ◽  
Iris Nandhakumar ◽  
...  

Abstract The best known thermoelectric material for near room temperature heat-to-electricity conversion is bismuth telluride. Amongst the possible fabrication techniques, electrodeposition has attracted attention due to its simplicity and low cost. However, the measurement of the thermoelectric properties of electrodeposited films is challenging because of the conducting seed layer underneath the film. Here, we develop a method to directly measure the thermoelectric properties of electrodeposited bismuth telluride thin films, grown on indium tin oxide. Using this technique, the temperature dependent thermoelectric properties (Seebeck coefficient and electrical conductivity) of electrodeposited thin films have been measured down to 100 K. A parallel resistor model is employed to discern the signal of the film from the signal of the seed layer and the data are carefully analysed and contextualized with literature. Our analysis demonstrates that the thermoelectric properties of electrodeposited films can be accurately evaluated without inflicting any damage to the films.


Sign in / Sign up

Export Citation Format

Share Document