Low-cost large area processing using small area substrates-a novel multitiled palletization concept for MCM-D thin film process

2000 ◽  
Vol 23 (4) ◽  
pp. 661-671 ◽  
Author(s):  
S.K. Bhattacharya ◽  
B.M. Gardner ◽  
J. Qu ◽  
D.F. Baldwin ◽  
R.R. Tummala
Keyword(s):  
Low Cost ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
G. Panzeri ◽  
M. Cristina ◽  
M. S. Jagadeesh ◽  
G. Bussetti ◽  
L. Magagnin

Abstract In this work, a three-layered heterostructure Cu2O/CuO/CuS was obtained through a low-cost and large-area fabrication route comprising electrodeposition, thermal oxidation, and reactive annealing in a sulfur atmosphere. Morphological, microstructural, and compositional analysis (AFM, SEM, XRD, EDS, XPS) were carried out to highlight the surface modification of cuprous oxide film after oxidation and subsequent sulfurization. Impedance, voltammetric, and amperometric photoelectrochemical tests were performed on Cu2O, Cu2O/CuO, and Cu2O/CuO/CuS photocathodes in a sodium sulfate solution (pH 5), under 100 mW cm−2 AM 1.5 G illumination. A progressive improvement in terms of photocurrent and stability was observed after oxidation and sulfurization treatments, reaching a maximum of − 1.38 mA cm−2 at 0 V versus RHE for the CuS-modified Cu2O/CuO electrode, corresponding to a ~ 30% improvement. The feasibility of the proposed method was demonstrated through the fabrication of a large area photoelectrode of 10 cm2, showing no significant differences in characteristics if compared to a small area photoelectrode of 1 cm2.


2015 ◽  
Vol 1731 ◽  
Author(s):  
Chih-Hung Li ◽  
Jian-Zhang Chen ◽  
I-Chun Cheng

ABSTRACTWe investigated the electrical properties of the rf-sputtered HfxZn1-xO/ZnO heterostructures. The thermal annealing on ZnO prior to the HfxZn1-xO deposition greatly influences the properties of the heterostructures. A highly conductive interface formed at the interface between HfxZn1-xO and ZnO thin films as the ZnO annealing temperature exceeded 500°C, leading to the apparent decrease of the electrical resistance. The resistance decreased with an increase of either thickness or Hf content of the HfxZn1-xO capping layer. The Hf0.05Zn0.95O/ZnO heterostructure with a 200-nm-thick 600°C-annealed ZnO exhibits a carrier mobility of 14.3 cm2V-1s-1 and a sheet carrier concentration of 1.93×1013 cm-2; the corresponding values for the bare ZnO thin film are 0.47 cm2V-1s-1 and 2.27×1012 cm-2, respectively. Rf-sputtered HfZnO/ZnO heterostructures can potentially be used to increase the carrier mobility of thin-film transistors in large-area electronics.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Shizuyasu Ochiai ◽  
Kumar Palanisamy ◽  
Santhakumar Kannappan ◽  
Paik-Kyun Shin

Pentacene OFETs of bottom-gate/bottom-contact were fabricated with three types of pentacene organic semiconductors and cross linked Poly(4-vinylphenol) or polycarbonate as gate dielectric layer. Two different processes were used to prepare the pentacene active channel layers: (1) spin-coating on dielectric layer using two different soluble pentacene precursors of SAP and DMP; (2) vacuum evaporation on PC insulator. X-ray diffraction studies revealed coexistence of thin film and bulk phase of pentacene from SAP and thin film phase of pentacene from DMP precursors. The field effect mobility of 0.031 cm2/Vs and threshold voltage of −12.5 V was obtained from OFETs fabricated from SAP precursor, however, the pentacene OFETs from DMP under same preparation yielded high mobility of 0.09 cm2/Vs and threshold value decreased to −5 V. It reflects that the mixed phase films had carrier mobilities inferior to films consisting solely of single phase. For comparison, we have also fabricated pentacene OFETs by vacuum evaporation on polycarbonate as the gate dielectric and obtained charge carrier mobilities as large as 0.62 cm2/Vs and threshold voltage of −8.5 V. We demonstrated that the spin-coated pentacene using soluble pentacene precursors could be alternative process technology for low cost, large area and low temperature fabrication of OFETs.


MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 45-47 ◽  
Author(s):  
T. Suntola

Cadmium telluride is currently the most promising material for high efficiency, low-cost thin-film solar cells. Cadmium telluride is a compound semiconductor with an ideal 1.45 eV bandgap for direct light-to-electricity conversion. The light absorption coefficient of CdTe is high enough to make a one-micrometer-thick layer of material absorb over 99% of the visible light. Processing homogenous polycrystalline thin films seems to be less critical for CdTe than for many other compound semiconductors. The best small-area CdTe thin-film cells manufactured show more than 15% conversion efficiency. Large-area modules with aperture efficiencies in excess of 10% have also been demonstrated. The long-term stability of CdTe solar cell structures is not known in detail or in the necessary time span. Indication of good stability has been demonstrated. One of the concerns about CdTe solar cells is the presence of cadmium which is an environmentally hazardous material.


2015 ◽  
Vol 51 (79) ◽  
pp. 14696-14707 ◽  
Author(s):  
B. Susrutha ◽  
Lingamallu Giribabu ◽  
Surya Prakash Singh

Flexible thin-film photovoltaics facilitate the implementation of solar devices into portable, reduced dimension, and roll-to-roll modules. In this review, we describe recent developments in the fabrication of flexible perovskite solar cells that are low cost and highly efficient and can be used for the fabrication of large-area and lightweight solar cell devices.


Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 547-557 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
Chang-Wei Yeh ◽  
Pin-Ru Chen ◽  
...  

Solar Energy ◽  
2016 ◽  
Vol 125 ◽  
pp. 415-425 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Hong-Ru Hsu ◽  
Kai-Cheng Wang ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Rehan Kapadia ◽  
Zhibin Yu ◽  
Hsin-Hua H. Wang ◽  
Maxwell Zheng ◽  
Corsin Battaglia ◽  
...  
Keyword(s):  
Low Cost ◽  

MRS Advances ◽  
2018 ◽  
Vol 3 (33) ◽  
pp. 1871-1876 ◽  
Author(s):  
Chen Jiang ◽  
Hanbin Ma ◽  
Arokia Nathan

Abstract:All-inkjet-printed organic thin-film transistors take advantage of low-cost fabrication and high compatibility to large-area manufacturing, making them potential candidates for flexible, wearable electronics. However, in real-world applications, device instability is an obstacle, and thus, understanding the factors that cause instability becomes compelling. In this work, all-inkjet-printed low-voltage organic thin-film transistors were fabricated and their stability was investigated. The devices demonstrate low operating voltage (<3 V), small subthreshold slope (128 mV/decade), good mobility (0.1 cm2 V−1 s−1), close-to-zero threshold voltage (−0.16 V), and high on/off ratio (>105). Several aspects of stability were investigated, including mechanical bending, shelf life, and bias stress. Based on these tests, we find that water molecule polarization in dielectrics is the main factor causing instability. Our study suggests use of a printable water-resistant dielectric for stability enhancement for the future development of all-inkjet-printed organic thin-film transistors.


1994 ◽  
Vol 116 (1) ◽  
pp. 25-27
Author(s):  
C. Fredric ◽  
D. Tarrant ◽  
C. Jensen ◽  
J. Hummel ◽  
J. Ermer

Recent advances in the efficiency and manufacturing technology of CuInSe2 (CIS) thin films demonstrate the opportunity for low-cost large-scale production of photovoltaics for utility applications. Large area (0.4 m2) submodules with 9.7 percent aperture efficiencies yielding 37.8 watts have been fabricated. Thin film fabrication techniques used in the production of modules enable reduced production costs compared with those for single crystal silicon. The performance of 0.4 m2 modules is projected to exceed 50 watts, based on performance achieved to date on 0.1 m2 modules and small area test devices. Preliminary tests packaged (encapsulated and framed) modules show no significant losses after 15 1/2 months of continuous outdoor exposure. Fabrication of 0.4 m2 modules to demonstrate the feasibility of large-scale commercialization of CIS thin film photovoltaics for utility applications is currently under way.


Sign in / Sign up

Export Citation Format

Share Document