scholarly journals A direct thin-film path towards low-cost large-area III-V photovoltaics

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Rehan Kapadia ◽  
Zhibin Yu ◽  
Hsin-Hua H. Wang ◽  
Maxwell Zheng ◽  
Corsin Battaglia ◽  
...  
Keyword(s):  
Low Cost ◽  
2015 ◽  
Vol 1731 ◽  
Author(s):  
Chih-Hung Li ◽  
Jian-Zhang Chen ◽  
I-Chun Cheng

ABSTRACTWe investigated the electrical properties of the rf-sputtered HfxZn1-xO/ZnO heterostructures. The thermal annealing on ZnO prior to the HfxZn1-xO deposition greatly influences the properties of the heterostructures. A highly conductive interface formed at the interface between HfxZn1-xO and ZnO thin films as the ZnO annealing temperature exceeded 500°C, leading to the apparent decrease of the electrical resistance. The resistance decreased with an increase of either thickness or Hf content of the HfxZn1-xO capping layer. The Hf0.05Zn0.95O/ZnO heterostructure with a 200-nm-thick 600°C-annealed ZnO exhibits a carrier mobility of 14.3 cm2V-1s-1 and a sheet carrier concentration of 1.93×1013 cm-2; the corresponding values for the bare ZnO thin film are 0.47 cm2V-1s-1 and 2.27×1012 cm-2, respectively. Rf-sputtered HfZnO/ZnO heterostructures can potentially be used to increase the carrier mobility of thin-film transistors in large-area electronics.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Shizuyasu Ochiai ◽  
Kumar Palanisamy ◽  
Santhakumar Kannappan ◽  
Paik-Kyun Shin

Pentacene OFETs of bottom-gate/bottom-contact were fabricated with three types of pentacene organic semiconductors and cross linked Poly(4-vinylphenol) or polycarbonate as gate dielectric layer. Two different processes were used to prepare the pentacene active channel layers: (1) spin-coating on dielectric layer using two different soluble pentacene precursors of SAP and DMP; (2) vacuum evaporation on PC insulator. X-ray diffraction studies revealed coexistence of thin film and bulk phase of pentacene from SAP and thin film phase of pentacene from DMP precursors. The field effect mobility of 0.031 cm2/Vs and threshold voltage of −12.5 V was obtained from OFETs fabricated from SAP precursor, however, the pentacene OFETs from DMP under same preparation yielded high mobility of 0.09 cm2/Vs and threshold value decreased to −5 V. It reflects that the mixed phase films had carrier mobilities inferior to films consisting solely of single phase. For comparison, we have also fabricated pentacene OFETs by vacuum evaporation on polycarbonate as the gate dielectric and obtained charge carrier mobilities as large as 0.62 cm2/Vs and threshold voltage of −8.5 V. We demonstrated that the spin-coated pentacene using soluble pentacene precursors could be alternative process technology for low cost, large area and low temperature fabrication of OFETs.


MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 45-47 ◽  
Author(s):  
T. Suntola

Cadmium telluride is currently the most promising material for high efficiency, low-cost thin-film solar cells. Cadmium telluride is a compound semiconductor with an ideal 1.45 eV bandgap for direct light-to-electricity conversion. The light absorption coefficient of CdTe is high enough to make a one-micrometer-thick layer of material absorb over 99% of the visible light. Processing homogenous polycrystalline thin films seems to be less critical for CdTe than for many other compound semiconductors. The best small-area CdTe thin-film cells manufactured show more than 15% conversion efficiency. Large-area modules with aperture efficiencies in excess of 10% have also been demonstrated. The long-term stability of CdTe solar cell structures is not known in detail or in the necessary time span. Indication of good stability has been demonstrated. One of the concerns about CdTe solar cells is the presence of cadmium which is an environmentally hazardous material.


2015 ◽  
Vol 51 (79) ◽  
pp. 14696-14707 ◽  
Author(s):  
B. Susrutha ◽  
Lingamallu Giribabu ◽  
Surya Prakash Singh

Flexible thin-film photovoltaics facilitate the implementation of solar devices into portable, reduced dimension, and roll-to-roll modules. In this review, we describe recent developments in the fabrication of flexible perovskite solar cells that are low cost and highly efficient and can be used for the fabrication of large-area and lightweight solar cell devices.


Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 547-557 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
Chang-Wei Yeh ◽  
Pin-Ru Chen ◽  
...  

Solar Energy ◽  
2016 ◽  
Vol 125 ◽  
pp. 415-425 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Hong-Ru Hsu ◽  
Kai-Cheng Wang ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
...  

MRS Advances ◽  
2018 ◽  
Vol 3 (33) ◽  
pp. 1871-1876 ◽  
Author(s):  
Chen Jiang ◽  
Hanbin Ma ◽  
Arokia Nathan

Abstract:All-inkjet-printed organic thin-film transistors take advantage of low-cost fabrication and high compatibility to large-area manufacturing, making them potential candidates for flexible, wearable electronics. However, in real-world applications, device instability is an obstacle, and thus, understanding the factors that cause instability becomes compelling. In this work, all-inkjet-printed low-voltage organic thin-film transistors were fabricated and their stability was investigated. The devices demonstrate low operating voltage (<3 V), small subthreshold slope (128 mV/decade), good mobility (0.1 cm2 V−1 s−1), close-to-zero threshold voltage (−0.16 V), and high on/off ratio (>105). Several aspects of stability were investigated, including mechanical bending, shelf life, and bias stress. Based on these tests, we find that water molecule polarization in dielectrics is the main factor causing instability. Our study suggests use of a printable water-resistant dielectric for stability enhancement for the future development of all-inkjet-printed organic thin-film transistors.


1994 ◽  
Vol 116 (1) ◽  
pp. 25-27
Author(s):  
C. Fredric ◽  
D. Tarrant ◽  
C. Jensen ◽  
J. Hummel ◽  
J. Ermer

Recent advances in the efficiency and manufacturing technology of CuInSe2 (CIS) thin films demonstrate the opportunity for low-cost large-scale production of photovoltaics for utility applications. Large area (0.4 m2) submodules with 9.7 percent aperture efficiencies yielding 37.8 watts have been fabricated. Thin film fabrication techniques used in the production of modules enable reduced production costs compared with those for single crystal silicon. The performance of 0.4 m2 modules is projected to exceed 50 watts, based on performance achieved to date on 0.1 m2 modules and small area test devices. Preliminary tests packaged (encapsulated and framed) modules show no significant losses after 15 1/2 months of continuous outdoor exposure. Fabrication of 0.4 m2 modules to demonstrate the feasibility of large-scale commercialization of CIS thin film photovoltaics for utility applications is currently under way.


2015 ◽  
Vol 804 ◽  
pp. 183-186
Author(s):  
Prapon Lertloypanyachai ◽  
Eakgapon Kaewnuam ◽  
Krittiya Sreebunpeng

Titanium dioxide (TiO2) is coated onto the materials (e.g.glass ceramic) to inhibit the bacteria growth. TiO2has become a popular photocatalyst for both air and water purification. It has also shown to be very active for bacterial destruction even under UV light. The photocatalytic of TiO2involves the light-induced catalysis of reducing and oxidizing reactions on the surface of materials. The spray pyrolysis technique for material synthesis in thin-film configuration is an interesting option due to the use of inexpensive precursor materials and low-cost equipment suitable for large-area coatings. In this research, TiO2thin films were deposited onto glass substrates using spray pyrolysis technique. Escherichia coli (E.coli) was used as testing bacteria. TiO2thin films showed some antibacterial effect in the halo test.


Author(s):  
S.E. Asher

Polycrystalline thin films of CdTe deposited on CdS are one of the most promising materials systems currently being investigated for the fabrication of low cost, large area, high efficiency photovoltaic devices. However, many of the deposition processes being used to fabricate these thin film materials have not yet been well characterized. It has been found that a post-fabrication heat-treatment is necessary to improve the quantum efficiency of these devices. Secondary ion mass spectrometry (SIMS) was used to study the interdiffusion of S and Te in CdTe/CdS structures grown by two different methods. The depth profiles revealed significant differences in the sputtering behavior depending on the film morphology.Two sets of CdTe/CdS samples were studied. The first set of films was deposited at high temperature using a spray pyrolysis technique with no post deposition anneal. The second set of films was electroplated, followed by treatment with CdCl2 and a high temperature anneal.


Sign in / Sign up

Export Citation Format

Share Document