Improved De-Saturation Protection Circuits for Silicon Carbide MOSFET Gate Drivers

Author(s):  
Bokang Zhou ◽  
Dongwoo Han ◽  
Fang Z. Peng ◽  
Suman Dwari
2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000218-000223 ◽  
Author(s):  
Paul Shepherd ◽  
Dillon Kaiser ◽  
Michael Glover ◽  
Sonia Perez ◽  
A. Matt Francis ◽  
...  

Recent work has been done to build a Silicon Carbide (SiC) gate driver IC for use with a 1,200V SiC power MOSFET. Protection circuits form an important part of the complete gate driver/power device system. Under-voltage lockout (UVLO) protection disables the gate driver when power supplies are insufficient to turn the power device fully on. Desaturation detection provides protection to the power device by recognizing over-current conditions and disabling the gate driver for a set duration. The protection circuits described in this paper are integrated with a novel SiC gate-driver architecture utilizing discrete 20 V and 40 V power supplies. Two separate UVLO circuits monitor these power supplies while being powered by the 20 V supply. The desaturation detection circuit ensures that the power device is in its safe operating area. The desaturation detection circuit is designed to work with a 20A SiC MOSFET in less than 500ns, while avoiding false triggering on leading-edge spikes. Bench test results of the two UVLOs and desaturation detection circuits were captured and are compared to simulated results.


2013 ◽  
Vol 62 (2) ◽  
pp. 333-343 ◽  
Author(s):  
Jacek Rąbkowski

Abstract The paper discusses the application of the current-source concept in the gate drivers for silicon carbide transistors. There is a common expectation that all SiC devices will be switched very fast in order to reach very low values of switching energies. This may be achieved with the use of suitable gate drivers and one of possibilities is a solution with the current source. The basic idea is to store energy in magnetic field of a small inductor and then release it to generate the current peak of the gate current. The paper describes principles of the current-source driver as well as various aspects of practical implementation. Then, the switching performance of the driven SiC transistors is illustrated by double-pulse test results of the normally-ON and normally-OFF JFETs. Other issues such as problem of the drain-gate capacitance and power consumption are also discussed on the base of experimental results. All presented results show that the currentsource concept is an interesting option to fast and efficient driving of SiC transistors.


2016 ◽  
Vol 63 (4) ◽  
pp. 1995-2004 ◽  
Author(s):  
Diane-Perle Sadik ◽  
Juan Colmenares ◽  
Georg Tolstoy ◽  
Dimosthenis Peftitsis ◽  
Mietek Bakowski ◽  
...  

Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


Sign in / Sign up

Export Citation Format

Share Document