Diagnostic of high speed analog circuits using DC conditions

Author(s):  
C.A. Gracios Marin ◽  
L.A. Sarmiento Reyes
Keyword(s):  

2015 ◽  
Vol 24 (04) ◽  
pp. 1550054 ◽  
Author(s):  
Jiangtao Xu ◽  
Jing Yu ◽  
Fujun Huang ◽  
Kaiming Nie

This paper presents a 10-bit column-parallel single slope analog-to-digital converter (SS ADC) with a two-step time-to-digital converter (TDC) to overcome the long conversion time problem in conventional SS ADC for high-speed CMOS image sensors (CIS). The time interval proportional to the input signal is generated by a ramp generator and a comparator, which is digitized by a two-step TDC consisting of coarse and fine conversions to achieve a high-precision time-interval measurement. To mitigate the impact of propagation delay mismatch, a calibration circuit is also proposed to calibrate the delay skew within -T/2 to T/2. The proposed ADC is designed in 0.18 μm CMOS process. The power dissipation of each column circuit is 232 μW at supply voltages of 3.3 V for the analog circuits and 1.8 V for the digital blocks. The post simulation results indicate that the ADC achieves a SNDR of 60.89 dB (9.82 ENOB) and a SFDR of 79.98 dB at a conversion rate of 2 MS/s after calibration, while the SNDR and SFDR are limited to 41.52 dB and 67.64 dB, respectively before calibration. The differential nonlinearity (DNL) and integral nonlinearity (INL) without calibration are +15.80/-15.29 LSB and +1.68/-15.34 LSB while they are reduced down to +0.75/-0.25 LSB and +0.76/-0.78 LSB with the proposed calibration.



1999 ◽  
Vol 123 (4) ◽  
pp. 590-597 ◽  
Author(s):  
T. Emura ◽  
L. Wang ◽  
M. Yamanaka ◽  
H. Nakamura ◽  
Y. Kato ◽  
...  

This paper describes a synchronous controller for high-productivity NC gear grinding machines that use a screw-shaped CBN wheel of multithread. The authors developed a high-precision controller for productive-type NC gear grinding machines in 1995. Because it was based on analog circuits, it required very complex electrical circuits. In this paper, we propose a PC-based synchronous controller to decrease production costs and add useful functions to it. The most useful one added this time is a function to increase pitch accuracy of gear ground with the multithread CBN wheel. Next useful one is a function to attain high-accuracy initial meshing between gear and CBN wheel. Because grinding-spindle and work spindle rotate at a high-speed, two-phase type PLL is applied to the controller. Grinding experiments showed that the newly developed controller has excellent performance.



Carbon nanotubes (CNTs) have emerged as a prominent material for present day nano-scale systems design. In spite of their widespread use in biology, and nano-electro mechanical systems (NEMS, CNTs have encroached upon conventional MOSFETs for the design of low power and high speed circuits. Because CNT possesses higher current carrying capability, higher transconductance and near ballistic transport of charge carriers. The diameter of the CNTs laid from the Source to the Drain in a CNFET has the significant influence on the characteristics of the device itself as well as on the features of circuits implemented using the said CNFET. Such variations in circuit parameters with CNT diameter can be shown to be more pronounced in analog circuits as compared to digital CNFET-based designs. The present work attempts to investigate the effect of diameter variation on a versatile analog building block (ABB) viz. the inverting current conveyor. It is demonstrated that various parameters of the ICC-II under scrutiny, like voltage bandwidth, current bandwidth, average power dissipation, etc. depend on the diameter of CNT(s) used in the CNFETs. HSPICE simulations performed on a 0.9V; 32nm CNFET-based ICC-II are included to exemplify the dependencies studied.



2019 ◽  
Vol 9 (3) ◽  
pp. 26 ◽  
Author(s):  
Woorham Bae

Since the CMOS technology scaling has focused on improving digital circuit, the design of conventional analog circuits has become more and more difficult. To overcome this challenge, there have been a lot of efforts to replace conventional analog circuits with digital implementations. Among those approaches, this paper gives an overview of the latest achievement on utilizing a CMOS inverter as an analog circuit. Analog designers have found that a simple resistive feedback pulls a CMOS inverter into an optimum biasing for analog operation. Recently developed applications of the resistive-feedback inverter, including CMOS inverter as amplifier, high-speed buffer, and output driver for high-speed link, are introduced and discussed in this paper.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shukai Duan ◽  
Xiaofang Hu ◽  
Lidan Wang ◽  
Shiyong Gao

The resonant tunneling diodes (RTD) have found numerous applications in high-speed digital and analog circuits owing to its folded-back negative differential resistance (NDR) in current-voltage (I-V) characteristics and nanometer size. On account of the replacement of the state resistor in standard cell by an RTD, an RTD-based cellular neural/nonlinear network (RTD-CNN) can be obtained, in which the cell requires neither self-feedback nor a nonlinear output, thereby being more compact and versatile. This paper addresses the structure of RTD-CNN in detail and investigates its fault-tolerant properties in image processing taking horizontal line detection and edge extraction, for examples. A series of computer simulations demonstrates the promising fault-tolerant abilities of the RTD-CNN.



1987 ◽  
Vol 65 (8) ◽  
pp. 850-855 ◽  
Author(s):  
G. Rabjohn ◽  
J. Wolczanski ◽  
R. Surridge

High-speed digital and microwave circuits have traditionally been tested by dicing wafers and mounting chips into high-frequency test carriers. This process is expensive, time consuming, and destructive. Methods of high-frequency measurement at the wafer stage are very desirable; for example, for wafer mapping, but conventional needle probes cannot be used because of their parasitics. New probe structures based on fine coaxial lines, vertically mounted microstrip lines, and tapered coplanar lines have been reported.For measurement at microwave frequencies (2–20 GHz), we have developed a geometry of a coplanar wave-guide probe that gives better than 10 dB return loss. Individual monolithic components can easily be measured and modelled for inclusion in a circuit simulation.For the measurement of digital circuits, especially those requiring several high-speed signal lines, we have used proprietary microstrip probes. Satisfactory operation up to about 2 Gbit∙s−1 has been observed, the upper bit rate being restricted by the inductance of the probe tip.Microwave-frequency and time-domain measurements of both types of probes have been made and will be discussed. Additionally, examples of the use of these probes for on-wafer measurements of digital and analog circuits will be given.



Sign in / Sign up

Export Citation Format

Share Document