Automatic tuning of PID controller for a 1-D levitation system using a genetic algorithm - a real case study

Author(s):  
Zhenyu Yang ◽  
Gerulf Pedersen
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Atefeh Amindoust ◽  
Milad Asadpour ◽  
Samineh Shirmohammadi

Nowadays and due to the pandemic of COVID-19, nurses are working under the highest pressure benevolently all over the world. This urgent situation can cause more fatigue for nurses who are responsible for taking care of COVID-19 patients 24 hours a day. Therefore, nurse scheduling should be modified with respect to this new situation. The purpose of the present research is to propose a new mathematical model for Nurse Scheduling Problem (NSP) considering the fatigue factor. To solve the proposed model, a hybrid Genetic Algorithm (GA) has been developed to provide a nurse schedule for all three shifts of a day. To validate the proposed approach, a randomly generated problem has been solved. In addition, to show the applicability of the proposed approach in real situations, the model has been solved for a real case study, a department in one of the hospitals in Esfahan, Iran, where COVID-19 patients are hospitalized. Consequently, a nurse schedule for May has been provided applying the proposed model, and the results approve its superiority in comparison with the manual schedule that is currently used in the department. To the best of our knowledge, it is the first study in which the proposed model takes the fatigue of nurses into account and provides a schedule based on it.


2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3385
Author(s):  
Erickson Puchta ◽  
Priscilla Bassetto ◽  
Lucas Biuk ◽  
Marco Itaborahy Filho ◽  
Attilio Converti ◽  
...  

This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.


Sign in / Sign up

Export Citation Format

Share Document