Analysis of MRI-based cortical surface structure complexity in dementia by sample entropy

Author(s):  
Ying Chen ◽  
Tuan D. Pham
2013 ◽  
Vol 13 (9) ◽  
pp. 271-271 ◽  
Author(s):  
N. C. Benson ◽  
O. H. Butt ◽  
S. Jain ◽  
D. H. Brainard ◽  
G. K. Aguirre

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4107
Author(s):  
Je-Un Jeong ◽  
Dae-Yun Ji ◽  
Kwon-Yeong Lee ◽  
Woonbong Hwang ◽  
Chang-Hun Lee ◽  
...  

In general, the dropwise condensation supported by superhydrophobic surfaces results in enhanced heat transfer relative to condensation on normal surfaces. However, in supersaturated environments that exceed a certain supersaturation threshold, moisture penetrates the surface structures and results in attached condensation, which reduces the condensation heat transfer efficiency. Therefore, when designing superhydrophobic surfaces for condensers, the surface structure must be resistant to attached condensation in supersaturated conditions. The gap size and complexity of the micro/nanoscale surface structure are the main factors that can be controlled to maintain water repellency in supersaturated environments. In this study, the condensation heat exchange performance was characterized for three different superhydrophobic titanium surface structures via droplet behavior (DB) mapping to evaluate their suitability for power plant condensers. In addition, it was demonstrated that increasing the surface structure complexity increases the versatility of the titanium surfaces by extending the window for improved heat exchange performance. This study demonstrates the usefulness of DB mapping for evaluating the performance of superhydrophobic surfaces regarding their applicability for industrial condenser systems.


2020 ◽  
Vol 10 (2) ◽  
pp. 117 ◽  
Author(s):  
Ryan Sullivan ◽  
Alexander Wallace ◽  
Natasha Wade ◽  
Ann Swartz ◽  
Krista Lisdahl

Cannabis use in adolescents and young adults is linked with aberrant brain structure, although findings to date are inconsistent. We examined whether aerobic fitness moderated the effects of cannabis on cortical surface structure and whether gender may play a moderating role. Seventy-four adolescents and young adults completed three-weeks of monitored abstinence, aerobic fitness testing, and structural magnetic resonance imaging (sMRI). Whole-sample linear regressions examined the effects of gender, VO2 max, cannabis use, and their interactions on the surface area (SA) and local gyrification index (LGI). Cannabis use was associated with greater cuneus SA. Gender-by-cannabis predicted precuneus and frontal SA, and precentral, supramarginal, and frontal LGI; female cannabis users demonstrated greater LGI, whereas male cannabis users demonstrated decreased LGI compared to non-users. Aerobic fitness was positively associated with various SA and LGI regions. Cannabis-by-aerobic fitness predicted cuneus SA and occipital LGI. These findings demonstrate that aerobic fitness moderates the impact of cannabis on cortical surface structure, and gender differences are evident. These moderating factors may help explain inconsistencies in the literature and warrant further investigation. Present findings and aerobic fitness literature jointly suggest aerobic intervention may be a low-cost avenue for improving cortical surface structure, although the impact may be gender-specific.


Author(s):  
Sanford H. Vernick ◽  
Anastasios Tousimis ◽  
Victor Sprague

Recent electron microscope studies have greatly expanded our knowledge of the structure of the Microsporida, particularly of the developing and mature spore. Since these studies involved mainly sectioned material, they have revealed much internal detail of the spores but relatively little surface detail. This report concerns observations on the spore surface by means of the transmission electron microscope.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Author(s):  
D. Johnson ◽  
P. Moriearty

Since several species of Schistosoma, or blood fluke, parasitize man, these trematodes have been subjected to extensive study. Light microscopy and conventional electron microscopy have yielded much information about the morphology of the various stages; however, scanning electron microscopy has been little utilized for this purpose. As the figures demonstrate, scanning microscopy is particularly helpful in studying at high resolution characteristics of surface structure, which are important in determining host-parasite relationships.


Author(s):  
O.L. Krivanek ◽  
G.J. Wood

Electron microscopy at 0.2nm point-to-point resolution, 10-10 torr specimei region vacuum and facilities for in-situ specimen cleaning presents intere; ing possibilities for surface structure determination. Three methods for examining the surfaces are available: reflection (REM), transmission (TEM) and profile imaging. Profile imaging is particularly useful because it giv good resolution perpendicular as well as parallel to the surface, and can therefore be used to determine the relationship between the surface and the bulk structure.


Sign in / Sign up

Export Citation Format

Share Document