A High-Performance Micro Spot-Size Converter Fabricated using Focused Ion-Beam Etching Technique

Author(s):  
K. Shiraishi ◽  
C.S. Tsai ◽  
H. Yoda ◽  
K. Minagawa ◽  
A. Irie
2006 ◽  
Vol 18 (14) ◽  
pp. 1554-1556 ◽  
Author(s):  
H. Yoda ◽  
H. Ikedo ◽  
T. Ketsuka ◽  
A. Irie ◽  
K. Shiraishi ◽  
...  

Microscopy ◽  
2020 ◽  
Author(s):  
Kazuo Yamamoto ◽  
Satoshi Anada ◽  
Takeshi Sato ◽  
Noriyuki Yoshimoto ◽  
Tsukasa Hirayama

Abstract Phase-shifting electron holography (PS-EH) is an interference transmission electron microscopy technique that accurately visualizes potential distributions in functional materials, such as semiconductors. In this paper, we briefly introduce the features of the PS-EH that overcome some of the issues facing the conventional EH based on Fourier transformation. Then, we present a high-precision PS-EH technique with multiple electron biprisms and a sample preparation technique using a cryo-focused-ion-beam, which are important techniques for the accurate phase measurement of semiconductors. We present several applications of PS-EH to demonstrate the potential in organic and inorganic semiconductors and then discuss the differences by comparing them with previous reports on the conventional EH. We show that in situ biasing PS-EH was able to observe not only electric potential distribution but also electric field and charge density at a GaAs p-n junction and clarify how local band structures, depletion layer widths, and space charges changed depending on the biasing conditions. Moreover, the PS-EH clearly visualized the local potential distributions of two-dimensional electron gas (2DEG) layers formed at AlGaN/GaN interfaces with different Al compositions. We also report the results of our PS-EH application for organic electroluminescence (OEL) multilayers and point out the significant potential changes in the layers. The proposed PS-EH enables more precise phase measurement compared to the conventional EH, and our findings introduced in this paper will contribute to the future research and development of high-performance semiconductor materials and devices.


2011 ◽  
Vol 7 (4) ◽  
pp. 594-597
Author(s):  
Zhan-Shuo Hu ◽  
Fei-Yi Hung ◽  
Shoou-Jinn Chang ◽  
Bohr-Ran Huang ◽  
Bo-Cheng Lin ◽  
...  

2008 ◽  
Vol 22 (31n32) ◽  
pp. 6118-6123 ◽  
Author(s):  
SUNG-WON YOUN ◽  
CHIEKO OKUYAMA ◽  
MASHARU TAKAHASHI ◽  
RYUTARO MAEDA

Glass hot-embossing is one of essential techniques for the development of high-performance optical, bio, and chemical micro electromechanical system (MEMS) devices. This method is convenient, does not require routine access to clean rooms and photolithographic equipment, and can be used to produce multiple copies of a quartz mold as well as a MEMS component. In this study, quartz molds were prepared by hot-embossing with the glassy carbon (GC) masters, and they were applied to the hot-emboss of borosilicate glasses. The GC masters were prepared by dicing and focused ion beam (FIB) milling techniques. Additionally, the surfaces of the embossed quartz molds were coated with molybdenum barrier layers before embossing borosilicate glasses. As a result, micro-hot-embossed structures could be developed in borosilicate glasses with high fidelity by hot embossing with quartz molds.


2015 ◽  
Vol 5 (7) ◽  
pp. 1647 ◽  
Author(s):  
A. L. Chekhov ◽  
V. L. Krutyanskiy ◽  
V. A. Ketsko ◽  
A. I. Stognij ◽  
T. V. Murzina

2001 ◽  
Vol 15 (24n25) ◽  
pp. 3359-3360 ◽  
Author(s):  
Hye-Won Seo ◽  
Quark Y. Chen ◽  
Chong Wang ◽  
Wei-Kan Chu ◽  
T. M. Chuang ◽  
...  

We have fabricated nano-scaled planar superconductor-insulator-superconductor Josephson junctions using focused ion beam (FIB) with beam spot size ~5 nm . To study the effectiveness of this fabrication technique and for the purpose of comparisons, a variety of samples have been made based on high temperature superconducting (HTS) YBa2Cu3O7-δ electrodes. The insulators are either vacuum or silicon dioxide. The samples showed current-voltage (IV) characteristics typical of a resistively shunted junction (RSJ). We will discuss various aspects of the processing methods and the physical significance of the junction characteristics.


1999 ◽  
Vol 4 (S1) ◽  
pp. 769-774 ◽  
Author(s):  
C. Flierl ◽  
I.H. White ◽  
M. Kuball ◽  
P.J. Heard ◽  
G.C. Allen ◽  
...  

We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RIE) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching – a well-established technique for optical mask repair and for IC failure analysis and repair – without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5 × 10−4 μm3/pC. At a current of 3nA, for example, this corresponds to an each rate of 1.05 μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1 μm. Change in the roughness of the etched surface plane stay below 8nm.


Sign in / Sign up

Export Citation Format

Share Document