CFAR Detection of Extended Targets for Medium Resolution Radars

Author(s):  
Ramkumar Raghu ◽  
Nanditha Unnikrishnan ◽  
R Rajesh ◽  
Reena Sharma
Author(s):  
J. S. Shah ◽  
R. Durkin ◽  
A. N. Farley

It is now possible to perform High Pressure Scanning Electron Microscopy (HPSEM) in the range 10 to 2000 Pa. Here the effect of scattering on resolution has been evaluated by calculating the profile of the beam in high pressure and assessing its effect on the image contrast . An experimental scheme is presented to show that the effect of the primary beam ionization is to reduce image contrast but this effect can be eliminated by a novel use of specimen current detection in the presence of an electric field. The mechanism of image enhancement is discussed in terms of collection of additional carriers generated by the emissive components.High Pressure SEM (HPSEM) instrumentation is establishing itself as commercially viable. There are now a number of manufacturers, such as JEOL, ABT, ESCAN, DEBEN RESEARCH, selling microscopes and accessories for HPSEM. This is because high pressure techniques have begun to yield high quality micrographs at medium resolution.To study the effect of scattering on the incident electron beam, its profile - in a high pressure environment - was evaluated by calculating the elastic and inelastic scattering cross sections for nitrogen in the energy range 5-25 keV. To assess the effect of the scattered beam on the image contrast, the modification of a sharp step contrast function due to scattering was calculated by single scattering approximation and experimentally confirmed for a 20kV accelerated beam.


2012 ◽  
Vol 38 (12) ◽  
pp. 1885 ◽  
Author(s):  
Ming-Bo ZHAO ◽  
Jun HE ◽  
Qiang FU

2021 ◽  
Vol 13 (5) ◽  
pp. 920
Author(s):  
Zhongting Wang ◽  
Ruru Deng ◽  
Pengfei Ma ◽  
Yuhuan Zhang ◽  
Yeheng Liang ◽  
...  

Aerosol distribution with fine spatial resolution is crucial for atmospheric environmental management. This paper proposes an improved algorithm of aerosol retrieval from 250-m Medium Resolution Spectral Image (MERSI) data of Chinese FY-3 satellites. A mixing model of soil and vegetation was used to calculate the parameters of the algorithm from moderate-resolution imaging spectroradiometer (MODIS) reflectance products in 500-m resolution. The mixing model was used to determine surface reflectance in blue band, and the 250-m aerosol optical depth (AOD) was retrieved through removing surface contributions from MERSI data over Guangzhou. The algorithm was used to monitor two pollution episodes in Guangzhou in 2015, and the results displayed an AOD spatial distribution with 250-m resolution. Compared with the yearly average of MODIS aerosol products in 2015, the 250-m resolution AOD derived from the MERSI data exhibited great potential for identifying air pollution sources. Daily AODs derived from MERSI data were compared with ground results from CE318 measurements. The results revealed a correlation coefficient between the AODs from MERSI and those from the ground measurements of approximately 0.85, and approximately 68% results were within expected error range of ±(0.05 + 15%τ).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Betty Ha ◽  
Kevin P. Larsen ◽  
Jingji Zhang ◽  
Ziao Fu ◽  
Elizabeth Montabana ◽  
...  

AbstractReverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC–nevirapine, and RTIC–efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA–tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


1989 ◽  
Vol 106 ◽  
pp. 367-367
Author(s):  
Ian Griffin ◽  
C.J. Skinner ◽  
B.R. Whitmore

We present near IR (H, K and L band) medium resolution (ƛ/Δƛ ∼ 600) spectra for a selection of 9 red giants which have previously been shown to exhibit anomalous dust emission as characterised by their IRAS LRS spectra. The objects observed (during UKIRT and AAT service time) include Carbon stars whose LRS spectra show the 9.7μm silicate feature and also M stars whose LRS spectra display an 11.3μm feature similar to that usually associated with emission from SiC dust grains.


1998 ◽  
Vol 11 (1) ◽  
pp. 379-379
Author(s):  
P.L. Cottrell ◽  
L. Skuljan ◽  
P.M. Kilmartin ◽  
C. Gilmore ◽  
W.A. Lawson

For more than a decade we have been able to acquire and analyse a significant amount of photometric data of the highly variable R Coronae Borealis (RCB) stars. This has made been possible by a photometric service observing programme instigated at the Observatory. These photometric data have been combined with less extensive spectroscopic coverage, particularly of the decline phase of these stars. These have been supplemented by observations obtained at Mount Stromlo and Siding Spring Observatories for a radial velocity study. Significantly more spectroscopic observations are now being acquired with the development of a new medium resolution spectrograph at Mount John University Observatory. In this poster we will present recent photometric and spectroscopic results for a number of the RCB stars in our sample. This observational and analysis work can be used to provide further insight into the nature of these stars, their likely progeny and progenitors and the processes that are involved in the formation and evolution of the obscuring dust clouds which cause the decline phase.


2021 ◽  
Vol 13 (11) ◽  
pp. 2233
Author(s):  
Rasa Janušaitė ◽  
Laurynas Jukna ◽  
Darius Jarmalavičius ◽  
Donatas Pupienis ◽  
Gintautas Žilinskas

Satellite remote sensing is a valuable tool for coastal management, enabling the possibility to repeatedly observe nearshore sandbars. However, a lack of methodological approaches for sandbar detection prevents the wider use of satellite data in sandbar studies. In this paper, a novel fully automated approach to extract nearshore sandbars in high–medium-resolution satellite imagery using a GIS-based algorithm is proposed. The method is composed of a multi-step workflow providing a wide range of data with morphological nearshore characteristics, which include nearshore local relief, extracted sandbars, their crests and shoreline. The proposed processing chain involves a combination of spectral indices, ISODATA unsupervised classification, multi-scale Relative Bathymetric Position Index (RBPI), criteria-based selection operations, spatial statistics and filtering. The algorithm has been tested with 145 dates of PlanetScope and RapidEye imagery using a case study of the complex multiple sandbar system on the Curonian Spit coast, Baltic Sea. The comparison of results against 4 years of in situ bathymetric surveys shows a strong agreement between measured and derived sandbar crest positions (R2 = 0.999 and 0.997) with an average RMSE of 5.8 and 7 m for PlanetScope and RapidEye sensors, respectively. The accuracy of the proposed approach implies its feasibility to study inter-annual and seasonal sandbar behaviour and short-term changes related to high-impact events. Algorithm-provided outputs enable the possibility to evaluate a range of sandbar characteristics such as distance from shoreline, length, width, count or shape at a relevant spatiotemporal scale. The design of the method determines its compatibility with most sandbar morphologies and suitability to other sandy nearshores. Tests of the described technique with Sentinel-2 MSI and Landsat-8 OLI data show that it can be applied to publicly available medium resolution satellite imagery of other sensors.


2019 ◽  
Vol 490 (1) ◽  
pp. 202-218 ◽  
Author(s):  
Andrew Swan ◽  
Jay Farihi ◽  
Detlev Koester ◽  
Mark Hollands ◽  
Steven Parsons ◽  
...  

ABSTRACT Nine metal-polluted white dwarfs are observed with medium-resolution optical spectroscopy, where photospheric abundances are determined and interpreted by comparison with Solar system objects. An improved method for making such comparisons is presented, which overcomes potential weaknesses of prior analyses, with numerous sources of error considered to highlight the limitations on interpretation. The stars are inferred to be accreting rocky, volatile-poor asteroidal materials with origins in differentiated bodies, in line with the consensus model. The most heavily polluted star in the sample has 14 metals detected, and appears to be accreting material from a rocky planetesimal, whose composition is mantle-like with a small Fe–Ni core component. Some unusual abundances are present. One star is strongly depleted in Ca, while two others show Na abundances elevated above bulk-Earth abundances; it is speculated that either the latter reflect diversity in the formation conditions of the source material, or they are traces of past accretion events. Another star shows clear signs that accretion ceased around 5 Myr ago, causing Mg to dominate the photospheric abundances, as it has the longest diffusion time of the observed elements. Observing such post-accretion systems allows constraints to be placed on models of the accretion process.


Sign in / Sign up

Export Citation Format

Share Document