Mechanism of Reverse Leakage Current in Schottky Diodes Involving Velocity Overshoot

Author(s):  
W.S. Lau
2014 ◽  
Vol 778-780 ◽  
pp. 828-831 ◽  
Author(s):  
Junichi Hasegawa ◽  
Kazuya Konishi ◽  
Yu Nakamura ◽  
Kenichi Ohtsuka ◽  
Shuhei Nakata ◽  
...  

We clarified the relationship between the enhanced leakage current of SiC Junction Barrier Schottky diodes and the stacking faults in the SiC crystal at the SiC and metal electrode interface by measuring the electrical and optical properties, and confirm by using the numerical simulations. Numerical simulation considering local lowering of Schottky barrier height, which is 0.8 eV lower than that of 4H-SiC well explained the 2-4 orders of magnitude higher reverse leakage current caused by the SFs. We concluded that the locally lowering of the Schottky barrier height at the 3C-SiC layer in the 4H-SiC surface is a main cause of the large reverse leakage current.


Vacuum ◽  
1991 ◽  
Vol 42 (16) ◽  
pp. 1094
Author(s):  
Zhao Shulan ◽  
Yu Jiafong ◽  
Yang Yali ◽  
Liu Shuqin ◽  
Liu Shuqin ◽  
...  

2013 ◽  
Vol 740-742 ◽  
pp. 781-784 ◽  
Author(s):  
Qing Chun Jon Zhang ◽  
Jennifer Duc ◽  
Van Mieczkowski ◽  
Brett Hull ◽  
Scott Allen ◽  
...  

A novel trench JBS structure has been developed to reduce the electrical field at the Schottky interface. Compared to the conventional planar JBS structure, the new design has reduced the reverse leakage current by 1 order of magnitude at rated voltage. The much reduced field at the Schottky interface allows an increase in the drift doping concentration, which enables a significant chip size reduction on next generation SiC Schottky diodes. This progress makes it possible to fabricate high current rating (>50 A) SiC diodes for module applications.


2021 ◽  
Vol 24 (04) ◽  
pp. 399-406
Author(s):  
A.M. Goriachko ◽  
◽  
M.V. Strikha ◽  
◽  

This paper presents the fabrication procedure of TiO2 passivated field plate Schottky diode and gives a comparison of Ni/Au/n-GaN Schottky barrier diodes without field plate and with field plate of varying diameters from 50 to 300 µm. The influence of field oxide (TiO2) on the leakage current of Ni/Au/n-GaN Schottky diode was investigated. This suggests that the TiO2 passivated structure reduces the reverse leakage current of Ni/Au/n-GaN Schottky diode. Also, the reverse leakage current of Ni/Au/n-GaN Schottky diodes decreases as the field plate length increases. The temperature-dependent electrical characteristics of TiO2 passivated field plate Ni/Au/n-GaN Schottky diodes have shown an increase of barrier height within the temperature range 300…475 K.


2021 ◽  
Vol 118 (12) ◽  
pp. 122102
Author(s):  
Qinglong Yan ◽  
Hehe Gong ◽  
Jincheng Zhang ◽  
Jiandong Ye ◽  
Hong Zhou ◽  
...  

1995 ◽  
Vol 391 ◽  
Author(s):  
W.F. Mcarthur ◽  
K.M. Ring ◽  
K.L. Kavanagh

AbstractThe feasibility of Si-implanted TiN as a diffusion barrier between Cu and Si was investigated. Barrier effectiveness was evaluated via reverse leakage current of Cu/TixSiyNz/Si diodes as a function of post-deposition annealing temperature and time, and was found to depend heavily on the film composition and microstructure. TiN implanted with Si28, l0keV, 5xl016ions/cm2 formed an amorphous ternary TixSiyNz layer whose performance as a barrier to Cu diffusion exceeded that of unimplanted, polycrystalline TiN. Results from current-voltage, transmission electron microscopy (TEM), and Auger depth profiling measurements will be presented. The relationship between Si-implantation dose, TixSiyNz structure and reverse leakage current of Cu/TixSiyNz/Si diodes will be discussed, along with implications as to the suitability of these structures in Cu metallization.


2005 ◽  
Vol 483-485 ◽  
pp. 925-928 ◽  
Author(s):  
Roland Rupp ◽  
Michael Treu ◽  
Peter Türkes ◽  
H. Beermann ◽  
Thomas Scherg ◽  
...  

Other than open micropipes (MP), overgrown micropipes do not necessarily lead to a^significantly reduced blocking capability of the affected SiC device. However they can lead to a degradation of the device during operation. In this paper the physical structure of overgrown micropipes will be revealed and their contribution to the leakage current will be shown. The possible impact of the high local power dissipation in the surrounding of the overgrown micropipe will be discussed and long term degradation mechanisms will be described. Failure simulation under laboratory conditions shows a clear correlation between the position of overgrown micropipes and the location of destructive burnt spots.


Sign in / Sign up

Export Citation Format

Share Document