Temperature-dependent reverse leakage current characterization of n-GaN Schottky diodes

Author(s):  
T. Saito ◽  
K. Nitanda ◽  
A. Syahiman ◽  
H. Tokuda ◽  
M. Kuzuhara
2021 ◽  
Vol 24 (04) ◽  
pp. 399-406
Author(s):  
A.M. Goriachko ◽  
◽  
M.V. Strikha ◽  
◽  

This paper presents the fabrication procedure of TiO2 passivated field plate Schottky diode and gives a comparison of Ni/Au/n-GaN Schottky barrier diodes without field plate and with field plate of varying diameters from 50 to 300 µm. The influence of field oxide (TiO2) on the leakage current of Ni/Au/n-GaN Schottky diode was investigated. This suggests that the TiO2 passivated structure reduces the reverse leakage current of Ni/Au/n-GaN Schottky diode. Also, the reverse leakage current of Ni/Au/n-GaN Schottky diodes decreases as the field plate length increases. The temperature-dependent electrical characteristics of TiO2 passivated field plate Ni/Au/n-GaN Schottky diodes have shown an increase of barrier height within the temperature range 300…475 K.


1995 ◽  
Vol 391 ◽  
Author(s):  
W.F. Mcarthur ◽  
K.M. Ring ◽  
K.L. Kavanagh

AbstractThe feasibility of Si-implanted TiN as a diffusion barrier between Cu and Si was investigated. Barrier effectiveness was evaluated via reverse leakage current of Cu/TixSiyNz/Si diodes as a function of post-deposition annealing temperature and time, and was found to depend heavily on the film composition and microstructure. TiN implanted with Si28, l0keV, 5xl016ions/cm2 formed an amorphous ternary TixSiyNz layer whose performance as a barrier to Cu diffusion exceeded that of unimplanted, polycrystalline TiN. Results from current-voltage, transmission electron microscopy (TEM), and Auger depth profiling measurements will be presented. The relationship between Si-implantation dose, TixSiyNz structure and reverse leakage current of Cu/TixSiyNz/Si diodes will be discussed, along with implications as to the suitability of these structures in Cu metallization.


2018 ◽  
Vol 763 ◽  
pp. 173-179 ◽  
Author(s):  
D. Hamri ◽  
A. Teffahi ◽  
A. Djeghlouf ◽  
A. Saidane ◽  
A. Mesli

2014 ◽  
Vol 778-780 ◽  
pp. 828-831 ◽  
Author(s):  
Junichi Hasegawa ◽  
Kazuya Konishi ◽  
Yu Nakamura ◽  
Kenichi Ohtsuka ◽  
Shuhei Nakata ◽  
...  

We clarified the relationship between the enhanced leakage current of SiC Junction Barrier Schottky diodes and the stacking faults in the SiC crystal at the SiC and metal electrode interface by measuring the electrical and optical properties, and confirm by using the numerical simulations. Numerical simulation considering local lowering of Schottky barrier height, which is 0.8 eV lower than that of 4H-SiC well explained the 2-4 orders of magnitude higher reverse leakage current caused by the SFs. We concluded that the locally lowering of the Schottky barrier height at the 3C-SiC layer in the 4H-SiC surface is a main cause of the large reverse leakage current.


Vacuum ◽  
1991 ◽  
Vol 42 (16) ◽  
pp. 1094
Author(s):  
Zhao Shulan ◽  
Yu Jiafong ◽  
Yang Yali ◽  
Liu Shuqin ◽  
Liu Shuqin ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
P. Pipinys ◽  
V. Lapeika

Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT) model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K) using for calculation the effective mass of 0.222 . and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy) are also explicable in the framework of the PhAT model.


2013 ◽  
Vol 740-742 ◽  
pp. 781-784 ◽  
Author(s):  
Qing Chun Jon Zhang ◽  
Jennifer Duc ◽  
Van Mieczkowski ◽  
Brett Hull ◽  
Scott Allen ◽  
...  

A novel trench JBS structure has been developed to reduce the electrical field at the Schottky interface. Compared to the conventional planar JBS structure, the new design has reduced the reverse leakage current by 1 order of magnitude at rated voltage. The much reduced field at the Schottky interface allows an increase in the drift doping concentration, which enables a significant chip size reduction on next generation SiC Schottky diodes. This progress makes it possible to fabricate high current rating (>50 A) SiC diodes for module applications.


2005 ◽  
Vol 483-485 ◽  
pp. 625-628 ◽  
Author(s):  
Fabio Bergamini ◽  
Francesco Moscatelli ◽  
Mariaconcetta Canino ◽  
Antonella Poggi ◽  
Roberta Nipoti

We report on the electrical characterization of Al+ implanted p+/n 4H-SiC diodes via a planar technology. Hot implantation at 400°C and post implantation annealing at 1600°C and 1650°C in high purity Argon ambient were done for the realization of p+/n diodes. The current voltage characteristics of the p+/n diodes and the resistivity of the implanted layer were measured at room temperature. The majority of the 136 measured diodes had a turn on voltage of 1.75 V for both annealing temperatures. The 1600°C annealed diodes showed an almost exponential forward characteristic with ideality factor equal to 1.4, an average reverse leakage current density equal to (4.8 ± 0.1)×10-9 A/cm2 at –100 V, and a break down voltage between 600 and 900V. The 1650°C annealed diodes often had forward “excess current component” that deviates from the ideal forward exponential trend. The average reverse leakage current density was equal to (2.7 ± 0.5)×10-8 A/cm2 at –100 V, and the breakdown voltage was between 700 and 1000V, i.e. it approached the theoretical value for the epitaxial 4H-SiC layer.


Sign in / Sign up

Export Citation Format

Share Document