Fabrication and Dielectric Breakdown of 3C-SiC/SiO2 MOS Capacitors

Author(s):  
Fan Li ◽  
Song Qiu ◽  
Mike R. Jennings ◽  
Phil A. Mawby
2010 ◽  
Vol 645-648 ◽  
pp. 821-824 ◽  
Author(s):  
Kohei Kozono ◽  
Takuji Hosoi ◽  
Yusuke Kagei ◽  
Takashi Kirino ◽  
Shuhei Mitani ◽  
...  

The dielectric breakdown mechanism in 4H-SiC metal-oxide-semiconductor (MOS) devices was studied using conductive atomic force microscopy (C-AFM). We performed time-dependent dielectric breakdown (TDDB) measurements using a line scan mode of C-AFM, which can characterize nanoscale degradation of dielectrics. It was found that the Weibull slope () of time-to-breakdown (tBD) statistics in 7-nm-thick thermal oxides on SiC substrates was much larger for the C-AFM line scan than for the common constant voltage stress TDDB tests on MOS capacitors, suggesting the presence of some weak spots in the oxides. Superposition of simultaneously obtained C-AFM topographic and current map images of SiO2/SiC structure clearly demonstrated that most of breakdown spots were located at step bunching. These results indicate that preferential breakdown at step bunching due to local electric field concentration is the probable cause of poor gate oxide reliability of 4H-SiC MOS devices.


2014 ◽  
Vol 778-780 ◽  
pp. 440-443 ◽  
Author(s):  
Manato Deki ◽  
Takahiro Makino ◽  
Kazutoshi Kojima ◽  
Takuro Tomita ◽  
Takeshi Ohshima

The leakage currents through the gate oxide of MOS capacitors fabricated on n-type 4H-Silicon Carbide (SiC) was measured under accumulation bias conditions with heavy-ion irradiation. The Linear Energy Transfer (LET) dependence of the critical electric field (Ecr) at which dielectric breakdown occurred in these capacitors with two different oxide thicknesses was evaluated. The MOS capacitors with thin gate oxide showed higherEcrvalues than those with thick gate oxide. The linear relationship between the reciprocalEcrandLETwas observed for both MOS capacitors. The slope ofLETdependence of 1/Ecrfor SiC MOS capacitors was smaller than that for Si, suggesting that SiC MOS devices are less susceptible to single-event gate rupture (SEGR) than Si MOS devices.


2009 ◽  
Vol 615-617 ◽  
pp. 557-560 ◽  
Author(s):  
Takuma Suzuki ◽  
Junji Senzaki ◽  
Tetsuo Hatakeyama ◽  
Kenji Fukuda ◽  
Takashi Shinohe ◽  
...  

The oxide reliability of metal-oxide-semiconductor (MOS) capacitors on 4H-SiC(000-1) carbon face was investigated. The gate oxide was fabricated by using N2O nitridation. The effective conduction band offset (Ec) of MOS structure fabricated by N2O nitridation was increased to 2.2 eV compared with Ec = 1.7 eV for pyrogenic oxidation sample of. Furthermore, significant improvements in the oxide reliability were observed by time-dependent dielectric breakdown (TDDB) measurement. It is suggested that the N2O nitridation as a method of gate oxide fabrication satisfies oxide reliability on 4H-SiC(000-1) carbon face MOSFETs.


2008 ◽  
Vol 8 (4) ◽  
pp. 635-641 ◽  
Author(s):  
Moshe Gurfinkel ◽  
Justin C. Horst ◽  
John S. Suehle ◽  
Joseph B. Bernstein ◽  
Yoram Shapira ◽  
...  

1993 ◽  
Vol 303 ◽  
Author(s):  
G. W. Yoon ◽  
A. B. Joshi ◽  
J. Kim ◽  
D. L. Kwong

ABSTRACTIn this paper, a detailed reliability investigation is presented for ultra-thin tunneling (∼50 Å) oxides grown in N2O ambient using rapid thermal processing (RTP). These N2Oss-oxides are compared with oxides of identical thickness grown in O2 ambient by RTP. The reliability investigations include time-dependent dielectric breakdown as well as stress-induced leakage current in MOS capacitors with these gate dielectrics. Results show that ultra-thin N2O-oxides show much improved reliability as compared to oxide grown in O2 ambient.


2003 ◽  
Vol 769 ◽  
Author(s):  
Mark Meitine ◽  
Andrei Sazonov

AbstractThe aim of this research is to develop low temperature gate dielectric/passivation layer for μc-Si and poly-Si based devices and circuits compatible with plastic substrates.The PECVD silicon oxide films were fabricated from mixture of silane and nitrous oxide at 250 °C, 120 °C and 75 °C. Helium, argon and nitrogen were used as diluent gases to optimize density, stress, uniformity, and electronic properties.Chemical composition and bonding in the films were studied by FTIR spectroscopy. The absorption peak at 1075-1080 cm-1 observed in the spectrum of each film corresponds to SiO2 stretching mode. No presence of SiH stretching or NH-stretching vibrations was found in the FTIR spectra of the samples.Film uniformity was varied from 1.44 % to 5.60 % for 3“×3” area. Four wafers were processed at the same time. The deposited films have compressive stress varied from 0.063 GPa to 0.117 GPa. Respective film density is in the range from 1.63 g/cm3 to 1.77 g/cm3.The electronic properties were studied on MOS capacitors with 200 nm thick SiOx. The dielectric permittivity was in the range between 2.03 and 3.57. The dielectric breakdown at 9 MV/cm was observed for the films deposited at 120 °C. The films deposited at higher temperatures are characterized by lower leakage current density, which was 3.7.10-10 A/cm2 for the sample deposited at 250 °C, 9.10-9 A/cm2 for 120 °C, and 2.2.10-8 A/cm2 for 75 °C at 5 MV/cm.The a-Si:H based TFTs were fabricated using low temperature oxide as gate dielectric. TFTs demonstrate threshold voltage (3.02 – 4.12 V) and mobility (0.12 – 0.59 cm2/Vs) comparing with those using silicon nitride.


2014 ◽  
Vol 778-780 ◽  
pp. 635-638 ◽  
Author(s):  
Le Shan Chan ◽  
Yu Hao Chang ◽  
Kung Yen Lee

ZrO2 films were deposited on C-face 4H-SiC substrates by using an RF sputter at a temperature of 200°C. Then, ZrO2 films were treated with RTA (rapid thermal annealing) process in Argon (Ar) ambient at 600°C, 700°C and 800°C for 4 minutes, respectively. The samples with RTA process show the lower leakage currents. As the measure temperature increases from room temperature (RT) to 150°C, the dielectric breakdown voltage reduces from 3 V to 1 V. The difference between quasi C-V characteristics and high frequency C-V characteristics at 1 MHz becomes larger with increasing RTA temperature. The C-V curves also shift to the left side as the measure temperature increases from RT to 150°C. It also shows the ledge on the C-V curves of samples with RTA at elevated measure temperature.


2011 ◽  
Vol 679-680 ◽  
pp. 354-357
Author(s):  
Jody Fronheiser ◽  
Aveek Chatterjee ◽  
Ulrike Grossner ◽  
Kevin Matocha ◽  
Vinayak Tilak ◽  
...  

The gate oxide reliability and channel mobility of carbon face (000-1) 4H Silicon Carbide (SiC) MOSFETs are investigated. Several gate oxidation processes including dry oxygen, pyrogenic steam, and nitrided oxides were investigated utilizing MOS capacitors for time dependent dielectric breakdown (TDDB), dielectric field strength, and MOSFETs for inversion layer mobility measurements. The results show the C-face can achieve reliability similar to the Si-face, however this is highly dependent on the gate oxide process. The reliability is inversely related to the field effect mobility where other research groups report that pyrogenic steam yields the highest electron mobility while this work shows it has weakest oxide in terms of dielectric strength and shortest time to failure.


1999 ◽  
Vol 567 ◽  
Author(s):  
S. K. Kurinec ◽  
M. A. Jackson ◽  
K. C. Capasso ◽  
K. Zhuang ◽  
G. Braunstein

ABSTRACTThin oxides (3-20 nm) have been grown on nitrogen-implanted silicon by regular thermal oxidation and by rapid thermal oxidation in dry oxygen. The implant dose ranged from 1×1013 to 1×1015 cm−2. Significant oxidation retardation has been observed for nitrogen doses above 1×1014 cm−2. Al-gate MOS capacitors were fabricated to characterize the thin oxides for dielectric breakdown strength and leakage. Gate oxides, grown by our standard baseline process, exhibited a decrease in their dielectric strength from ∼10 MV/cm for thickness > 18 nm to 3-4 MV/cm for < 8 nm thickness. The nitrided oxides maintained their integrity at ∼10 MV/cm as thickness decreased, unless a critical dose was exceeded, which resulted in poor performance. These electrical measurements indicate that a nitrogen implant, prior to gate oxide growth, is beneficial to oxide integrity.The structure of the SiO2/Si interface has been probed using X-ray photoelectron spectroscopy (XPS) and analyzing Si 2p core level spectra. The XPS analyses on as grown samples of nitrided and un-nitrided oxides of similar thickness (3 nm) do not show any significant suboxide peaks corresponding to Si1+, Si2+ or Si3+ states at the interface. However, on exposing the surface to argon ion sputtering at 3.5 kV for 30 seconds, prior to XPS analysis, the presence of suboxides at the SiO2/Si interface is detected. The SiO suboxide (Si2+) density in oxides grown on nitrogen-implanted silicon is much less than that in the oxides grown on unimplanted silicon. This is a direct evidence of sputter damage resistance of nitrided thin oxides. The beam-induced damage in the oxide is also found to be less in nitrided oxides. The suppression of suboxide formation at the interface due to the presence of nitrogen appears to be responsible for the enhanced reliability of nitrided oxides.


Sign in / Sign up

Export Citation Format

Share Document