Lead-Free Solder Micro-Ball Bumps for the Next Generation of Flip Chip Interconnection: Micro-Ball Materials, Bump Formation Process and Reliability

Author(s):  
Shinji Ishikawa ◽  
Tomoyuki Uchiyama ◽  
Eiji Hashino ◽  
Taro Kohno ◽  
Masamoto Tanaka ◽  
...  
2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000611-000638
Author(s):  
Jonathan Prange ◽  
Yi Qin ◽  
Matthew Thorseth ◽  
Inho Lee ◽  
Masaaki Imanari ◽  
...  

Flip-chip interconnect and 3-D packaging applications must utilize reliable, high-performance metallization products in order to produce highly-efficient, low-cost microelectronic devices. As the market moves to shrinking device architectural features and increasingly difficult pattern layouts, more demand is placed on the plating performance of the copper, nickel and lead-free solder products used to create these interconnects. Additionally, the move from traditional C4 bumping processes with lead-free solder to capping processes utilizing copper pillars with lead-free solder requires metal interfaces that are highly compatible in order to avoid defects that could occur. In this paper, next-generation products developed for copper pillar, nickel barrier, and lead-free solder plating will be introduced that are capable of delivering high-performance and highly reliable metallic interconnects. The additive packages that were selected and optimized allowing for increased rate of electrodeposition, uniform height control with controllable pillar shape and smooth surface morphology will be discussed. Furthermore, compatibility will be shown for a lead-free solder cap electrodeposited onto copper pillar structures, both with and without nickel barrier layers, on large pore features (≥50 μm diameter) and micro pore features (≤20 μm diameter) for both bumping and capping applications.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000458-000460
Author(s):  
Jonathan Prange ◽  
Julia Woertink ◽  
Yi Qin ◽  
Pedro Lopez Montesinos ◽  
Inho Lee ◽  
...  

Flip-chip interconnect and 3-D packaging applications must utilize reliable lead-free solder joints in order to produce highly efficient, advanced microelectronic devices. The solder alloy most commonly utilized for these applications is SnAg, which is typically deposited by electroplating due to lower cost and greater reliability as compared to other methods. The electroplating performance and robustness of SnAg products for bumping and capping applications is highly dependent on the organic additives used in the process. Here, next-generation SnAg products that improve the rate of solder electrodeposition without compromising key requirements such as tight Ag% control, uniform height distribution and smooth surface morphology will be discussed. These plated solders were then evaluated for compatibility with bumping, capping and micro-capping applications.


2004 ◽  
Vol 45 (3) ◽  
pp. 754-758 ◽  
Author(s):  
Ikuo Shohji ◽  
Yuji Shiratori ◽  
Hiroshi Yoshida ◽  
Masahiko Mizukami ◽  
Akira Ichida

2017 ◽  
Vol 2017 (1) ◽  
pp. 000201-000207 ◽  
Author(s):  
Youngtak Lee ◽  
Doug Link

Abstract Due to rapid growth of the microelectronics industry, packaged devices with small form factors, low costs, high power performance, and increased efficiency have become of high demand in the market. To realize the current market development trend, flip chip interconnection and System-in-Package (SiP) are some of the promising packaging solutions developed. However, a surprising amount of surface mount technology (SMT) defects are associated with the use of lead-free solder paste and methods by which the paste is applied. Two such defects are solder extrusion and tombstoning. Considerable amount of defects associated with solder overflow are found on chip-on-flip-chip (COFC) SiP in hearing aids. Through the use of design of experiments (DOE), lead-free solder defect causes on hearing aids application can be better understood and subsequently reduced or eliminated. This paper will examine the failure modes of solder extrusion and tombstoning that occurred when two different types of lead-free solders, Sn-Ag-Cu (SAC) and BiAgX were used within a SiP for attachment of surface mount devices (SMD) chip components for hearing aid applications. The practical application and analysis of lead-free solder for hearing aids will include the comprehensive failure analysis of the SMD components and compare the modeling and analysis of the two different solder types through the DOE process.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000799-000805
Author(s):  
Marek Gorywoda ◽  
Rainer Dohle ◽  
Bernd Kandler ◽  
Bernd Burger

Electromigration comprises one of the processes affecting the long-term reliability of electronic devices; it has therefore been the focus of many investigations in recent years. In regards to flip chip packaging technology, the majority of published data is concerned with electromigration in solder connections to metallized organic substrates. Hardly any information is available in the literature on electromigration in lead-free solder connections on thin film ceramic substrates. This work presents results of a study of electromigration in lead-free (SAC305) flip chip solder bumps with a nominal diameter of 40 μm or 30 μm with a pitch of 100 μm on silicon chips assembled onto thin film Al2O3 ceramic substrates. The under bump metallization (UBM) comprised of a 5 μm thick electroless nickel immersion gold (ENIG) layer directly deposited on the AlCu0.5 trace. The ceramic substrates were metallized using a thin film multilayer (NiCr-Au(1.5 μm)-Ni(2 μm) structure on the top of which wettable areas were produced with high precision by depositing flash Au (60 nm) of the required diameter (40 μm or 30 μm). All electromigration tests were performed at the temperature of 125 °C. Initially, one chip assembly with 40 μm and one with 30 μm solder bumps was loaded with the current density of 8 kA/cm2 for 1,000 h. The assemblies did not fail and an investigation with SEM revealed no significant changes to the microstructure of the bumps. Thereafter seven chip assemblies with 40 μm solder bumps and five assemblies with 30 μm bumps were subjected to electromigration tests of 14 kA/cm2 or 25 kA/cm2, respectively. Six of the 40 μm-assemblies failed after 7,000 h and none of the 30 μm-assemblies failed after 2,500 h of test duration so far. Investigation of failed samples performed with SEM and EDX showed asymmetric changes of microstructure in respect to current flow. Several intermetallic phases were found to form in the solder. The predominant damage of the interconnects was found to occur at the cathode contact to chip; the Ni-P layers there showed typical columnar Kirkendall voids caused by migration of Ni from the layers into the solder. Failure of the contacts apparently occurred at the interface between Ni-P and solder. In summary, the results of the study indicate a very high stability of lead-free solder connections on ceramic substrates against electromigration. This high stability is primarily due to a better heat dissipation and thus to a relatively low temperature increase of the ceramic packages caused by resistive heating during flow of electric current. In addition, the type of the metallization used in the study seems to be more resistant to electromigration than the standard PCB metallization as it does not contain a copper layer.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000111-000116
Author(s):  
Youngtak Lee ◽  
Doug Link

Abstract Due to rapid growth of the microelectronics industry, packaged devices with small form factors, low costs, high power performance, and increased efficiency have become of high demand in the market. To realize the current market development trend, flip chip interconnection and System-in-Package (SiP) are some of the promising packaging solutions developed. However, a surprising amount of surface mount technology (SMT) defects are associated with the use of lead-free solder paste and methods by which the paste is applied. Two such defects are solder extrusion and tombstoning. Through the use of design of experiments (DOE), lead-free solder defect causes can be better understood and subsequently reduced or eliminated. This paper will examine the failure modes of solder extrusion and tombstoning that occurred when two different types of lead-free solders, Sn-Ag-Cu (SAC) and BiAgX were used within a SiP for attachment of surface mount devices (SMD) chip components. The systematic investigation will include the comprehensive failure analysis of the SMD components and compare the modeling and analysis of the two different solder types utilizing the design of experiments methods.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000420-000423
Author(s):  
Kwang-Seong Choi ◽  
Ho-Eun Bae ◽  
Haksun Lee ◽  
Hyun-Cheol Bae ◽  
Yong-Sung Eom

A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process with the result that a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology can be easily implemented. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 μm is, successfully, formed.


Author(s):  
B. Senthil Kumar ◽  
Bayaras Abito Danila ◽  
Chong Mei Hoe Joanne ◽  
Zhang Rui Fen ◽  
Santosh Kumar Rath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document