Development of a Novel Lead Frame Based Double Side Liquid Cooling High Performance SiC Power Module

Author(s):  
Gongyue Tang ◽  
Leong Ching Wai ◽  
Siak Boon Lim ◽  
Yong Liang Ye ◽  
Boon Long Lau ◽  
...  
2021 ◽  
Author(s):  
Kuo-Shu Kao ◽  
Sheng-Tsai Wu ◽  
Ji-Yuan Syu ◽  
Tao-Chih Chang ◽  
Chang-Chun Lee

2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000402-000406
Author(s):  
B. Passmore ◽  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
...  

A high temperature, high performance power module was developed for extreme environment systems and applications to exploit the advantages of wide bandgap semiconductors. These power modules are rated > 1200V, > 100A, > 250 °C, and are designed to house any SiC or GaN device. Characterization data of this power module housing trench MOSFETs is presented which demonstrates an on-state current of 1500 A for a full-bridge switch position. In addition, switching waveforms are presented that exhibit fast transition times.


Author(s):  
Shiladitya Chakravorty ◽  
Bahgat Sammakia ◽  
Varaprasad Calmidi

Improved performance of semiconductor devices in recent years has resulted in consequent increase in power dissipation. Hence thermal characterization of components becomes important from an overall thermal design perspective of the system. This study looks at a high performance non-isolated point of load power module (a DC to DC converter) meant for advanced computing and server applications. Thermal characteristics of the module were experimentally analyzed by placing the power module on a bare test board (with no insulation) inside a wind tunnel with thermocouples attached to it. There were three devices on this module that dissipate power. There were two FETs (Field Effect Transistors) and an inductor which can be considered as sources. The consolidated power dissipation from the module was calculated by measuring the input voltage and input current while keeping the output voltage and current constant. Temperatures at various points on the module and the test card were recorded for different air flow velocities and overall power dissipation. Subsequently this set up was numerically analyzed using a commercially available computational fluid dynamics (CFD) code with the objective of comparing the results with experimental data previously obtained.


2012 ◽  
Vol 560-561 ◽  
pp. 1048-1051 ◽  
Author(s):  
Juan Hua Su ◽  
Feng Zhang Ren ◽  
Ze Yang

The bending performance of lead frame materials is a very important in improving the quality of lead frame alloys and meeting the needs of high performance integrated circuit. The sringback amount of curvature variation of CuFeP , CuCrZrMg , CuNiSi and CuCrSnZn alloy are researched by numerical simulation. Bending model is built by 3D modeling software, and the necessary post-processing is carried out. The bending springback amount △K of the four kinds of copper alloy materials are calculated out. The results show that the sringback amount of curvature variation of four copper alloys at the same condition from large to small in turn is CuCrZrMg, CuNiSi, CuFeP, CuCrSnZn. Smaller the minimum relatively bending radius of copper alloy used in lead frame, less the springback amount and better the forming performance.


2015 ◽  
Vol 743 ◽  
pp. 270-276
Author(s):  
X.L. Lin ◽  
D.F. Dong ◽  
Wei Hu Zhou

High performance servo system is the basis of fast tracking and precision measurement of laser tracker, and drive circuit is the hardware guarantee of the control algorithm in the system. This paper is concerned with the designed drive circuit of Permanent Magnet Synchronous Motor (PMSM). First, control system model of PMSM is introduced, as well as the PM10CSJ060 Intelligent Power Module (IPM) working principle. Then the drive circuit based on IPM is designed and applied in servo system. Experimental results show that the drive circuit is reliable and stable, with strong anti-interference function, can meet the performance requirements of laser trackers.


Author(s):  
Devdatta Kulkarni ◽  
Sandeep Ahuja ◽  
Sanjoy Saha

Continuously increasing demand for higher compute performance is pushing for improved advanced thermal solutions. In high performance computing (HPC) area, most of the end users deploy some sort of direct or indirect liquid cooling thermal solutions. But for the users who have air cooled data centers and air cooled thermal solutions are challenged to cool next generation higher Thermal Design Power (TDP) processors in the same platform form factor without changing environmental boundary conditions. This paper presents several different advanced air cooled technologies developed to cool high TDP processors in the same form factor and within the same boundary conditions of current generation processor. Comparison of thermal performance using different cooling technologies such as Liquid Assist Air Cooling (LAAC) and Loop Heat Pipe (LHP) are presented in this paper. A case study of Intel’s Knights Landing (KNL) processor is presented to show case the increase in compute performance due to different advanced air cooling technologies.


2021 ◽  
Vol 18 (3) ◽  
pp. 123-136
Author(s):  
Tzu-Hsuan Cheng ◽  
Kenji Nishiguchi ◽  
Yoshi Fukawa ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya ◽  
...  

Abstract Wide-Band Gap (WBG) power devices have become a promising option for high-power applications due to the superior material properties over traditional Silicon. To not limit WBG devices’ mother nature, a rugged and high-performance power device packaging solution is necessary. This study proposes a Double-Side Cooled (DSC) 1.2 kV half-bridge power module having dual epoxy resin insulated metal substrate (eIMS) for solving convectional power module challenges and providing a cost-effective solution. The thermal performance outperforms traditional Alumina (Al2O3) Direct Bonded Copper (DBC) DSC power module due to moderate thermal conductivity (10 W/mK) and thin (120 mm) epoxy resin composite dielectric working as the IMS insulation layer. This novel organic dielectric can withstand high voltage (5 kVAC @ 120 μm) and has a Glass Transition Temperature (Tg) of 300°C, which is suitable for high-power applications. In the thermal-mechanical modeling, the organic DSC power module can pass the thermal cycling test over 1,000 cycles by optimizing the mechanical properties of the encapsulant material. In conclusion, this article not only proposes a competitive organic-based power module but also a methodology of evaluation for thermal and mechanical performance.


Sign in / Sign up

Export Citation Format

Share Document