Compact Rolling Walker Mechatronic System for Gait Rehabilitation

Author(s):  
Georgiana Ionela Paduraru ◽  
Constantin Romica Stoica ◽  
Valentin Barbu ◽  
Mihaela Anca Alexe ◽  
Petre Lucian Seiciu ◽  
...  
2018 ◽  
Vol 22 ◽  
pp. 864-871 ◽  
Author(s):  
Ileana Ciobanu ◽  
Doina Ioana Stanculescu (Badea) ◽  
Alina Iliescu ◽  
Alina Magdalena Popescu ◽  
Petre Lucian Seiciu ◽  
...  

2016 ◽  
Vol 859 ◽  
pp. 231-235 ◽  
Author(s):  
Petre Lucian Seiciu ◽  
Ileana Ciobanu ◽  
Tadeusz Mikołajczyk ◽  
Andreea Georgiana Marin ◽  
Mihai Berteanu

Given the large variability of pathological gait and the high specificity of gait phenotypes, it is very difficult to design a gait rehabilitation system able to adapt to the functional requirements of every person with ambulation disabilities, in every stage of the complex process of gait rehabilitation. Another approach is that of ambiental gait rehabilitation, with focus on adaptability, not on adaptation, on synthetical training, not on analytical training, on integrative training, not on step by step training. Our focus is not on controlling the movement itself, but on controlling the environment that shapes human functionality and assuring the appropriate level of support, resistance and persuasion, with consequent stimulation of the explorative behavior and the active involvement of the person in gait training. A mechatronic system designed for such a therapeutical approach has specific functional requirements.


GeroPsych ◽  
2016 ◽  
Vol 29 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Véronique Cornu ◽  
Jean-Paul Steinmetz ◽  
Carine Federspiel

Abstract. A growing body of research demonstrates an association between gait disorders, falls, and attentional capacities in older adults. The present work empirically analyzes differences in gait parameters in frail institutionalized older adults as a function of selective attention. Gait analysis under single- and dual-task conditions as well as selective attention measures were collected from a total of 33 nursing-home residents. We found that differences in selective attention performances were related to the investigated gait parameters. Poorer selective attention performances were associated with higher stride-to-stride variabilities and a slowing of gait speed under dual-task conditions. The present findings suggest a contribution of selective attention to a safe gait. Implications for gait rehabilitation programs are discussed.


2020 ◽  
pp. 45-48
Author(s):  
S.I. Malafeev ◽  
A.A. Malafeeva ◽  
V.I. Konyashin

A correction method for regulating the mechatronic system of a «DUO-300» rolling mill with a direct current electric drive is considered. The results of the study of dynamic processes in the mechatronic system with the proposed correction are presented. Keywords rolling mill, mechatronic system, model, electric drive, engine, regulator, correction. [email protected]


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhendong Song ◽  
Wei Chen ◽  
Wenbing Wang ◽  
Guoqing Zhang

This paper proposes a body weight support (BWS) system with a series elastic actuator (SEA) to facilitate walking assistance and motor relearning during gait rehabilitation. This system comprises the following: a mobile platform that ensures movement of the system on the ground, a BWS mechanism with an SEA that is capable of providing the desired unloading force, and a pelvic brace to smooth the pelvis motions. The control of the body weight support is realized by an active weight-offload method, and a dynamic model of the BWS system with offload mass of a human is conducted to simulate the control process and optimize the parameters. Preliminary results demonstrate that the BWS system can provide the desired support force and vertical motion of the pelvis.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 705
Author(s):  
Fatemeh Rasouli ◽  
Kyle B. Reed

Dynamic models, such as double pendulums, can generate similar dynamics as human limbs. They are versatile tools for simulating and analyzing the human walking cycle and performance under various conditions. They include multiple links, hinges, and masses that represent physical parameters of a limb or an assistive device. This study develops a mathematical model of dissimilar double pendulums that mimics human walking with unilateral gait impairment and establishes identical dynamics between asymmetric limbs. It introduces new coefficients that create biomechanical equivalence between two sides of an asymmetric gait. The numerical solution demonstrates that dissimilar double pendulums can have symmetric kinematic and kinetic outcomes. Parallel solutions with different physical parameters but similar biomechanical coefficients enable interchangeable designs that could be incorporated into gait rehabilitation treatments or alternative prosthetic and ambulatory assistive devices.


Author(s):  
Antonio Rodríguez-Fernández ◽  
Joan Lobo-Prat ◽  
Josep M. Font-Llagunes

AbstractGait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what is the methodology used in the clinical validations of wearable lower-limb exoskeletons?, and (3) what are the benefits and current evidence on clinical efficacy of wearable lower-limb exoskeletons? We analyzed 87 clinical studies focusing on both device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, patient impairments), and make available the database with all the compiled information. The results of the literature survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technology is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of development and randomized control trials are needed to demonstrate their clinical efficacy.


Sign in / Sign up

Export Citation Format

Share Document