Enhanced Symmetric Cryptography for IoT using Novel Random Secret Key Approach

Author(s):  
Gopinath Sittampalam ◽  
Nagulan Ratnarajah
2021 ◽  
Vol 58 (1) ◽  
pp. 3420-3427
Author(s):  
P. A. S. D. Perera, G. S . Wijesiri

The present-day society depends heavily on digital technology where it is used in many applications such as banking and e-commerce transactions, computer passwords, etc. Therefore, it is important to protect information when storing and sharing them. Cryptography is the study of secret writing which applies complex math rules to convert the original message into an incomprehensible form.  Graph theory is applied in the field of cryptography as graphs can be simply converted into matrices There are two approaches of cryptography; symmetric cryptography and asymmetric cryptography. This paper proposes a new connection between graph theory and symmetric cryptography to protect the information from the unauthorized parties. This proposed methodology uses a matrix as the secret key which adds more security to the cryptosystem. It converts the plaintext into several graphs and represents these graphs in their matrix form. Also, this generates several ciphertexts. The size of the resulting ciphertexts are larger than the plaintext size.


2020 ◽  
Vol 8 (2) ◽  
pp. 10-18
Author(s):  
Hoàng Đình Linh

 Abstract— Random Sequences and random numbers play a very important role in cryptography. In symmetric cryptography primitives, a secret key is the most important component to ensure their security. While cryptographic protocols or digital signature schemes are also strongly dependent on random values. In addition, one of the criteria for evaluating security for cryptographic primitives such as block cipher, hash function... is to evaluate the output randomness. Therefore, the assessment of randomness according to statistical tests is really important for measuring the security of cryptographic algorithms. In this paper, we present some research results on randomness tests based on the length of runs proposed by A. Doğanaksoy et al in 2015. First, we show that some probability values for tests based on lengths 1 and 2 are inaccurate and suggest editing. Secondly, we have given and demonstrated for the general case the runs of any length k. Finally, we built a randomness testing tool and applied evaluations to true random sourcesTóm tắt— Các dãy và các số ngẫu nhiên đóng một vai trò rất quan trọng trong mật mã. Trong các nguyên thuỷ mật mã đối xứng, khoá bí mật chính là thành phần quan trọng nhất nhằm đảm bảo tính an toàn của chúng. Trong khi đó, các giao thức mật mã hay lược đồ chữ ký số cũng phụ thuộc nhiều vào các giá trị ngẫu nhiên. Ngoài ra, một trong các tiêu chí để đánh giá tính an toàn cho các nguyên thuỷ mật mã như mã khối, hàm băm… là đánh giá tính ngẫu nhiên đầu ra. Do đó, việc đánh giá tính ngẫu nhiên theo các kiểm tra thống kê thực sự rất quan trọng đối với việc đánh giá tính an toàn của các thuật toán mật mã. Trong bài báo này, chúng tôi trình bày một số kết quả nghiên cứu về các tiêu chuẩn kiểm tra loạt dựa trên độ dài đã được đề xuất bởi A. Doğanaksoy cùng đồng sự năm 2015. Đầu tiên, chúng tôi chỉ ra rằng một số giá trị xác suất cho các loạt độ dài 1 và 2 là chưa chính xác và đề xuất chỉnh sửa. Sau đó, chúng tôi đã đưa ra và chứng minh cho trường hợp tổng quát các loạt có độ dài kbất kỳ. Cuối cùng, chúng tôi đã xây dựng một công cụ kiểm tra tính ngẫu nhiên dựa trên độ dàicác loạt và áp dụng đánh giá cho các nguồn ngẫu nhiên thực sự.


Author(s):  
Olivier Seller

The LoRaWAN security design adheres to state-of-the-art principles: use of standard, well-vetted algorithms, and end-to-end security. The fundamental properties supported in LoRaWAN security are mutual end-point authentication, data origin authentication, integrity and replay protection, and confidentiality. The use of symmetric cryptography and prior secret key sharing between a device and a server enables an extremely power efficient and network efficient activation procedure.


Author(s):  
Lemcia Hutajulu ◽  
Hery Sunandar ◽  
Imam Saputra

Cryptography is used to protect the contents of information from anyone except those who have the authority or secret key to open information that has been encoded. Along with the development of technology and computers, the increase in computer crime has also increased, especially in image manipulation. There are many ways that people use to manipulate images that have a detrimental effect on others. The originality of a digital image is the authenticity of the image in terms of colors, shapes, objects and information without the slightest change from the other party. Nowadays many digital images circulating on the internet have been manipulated and even images have been used for material fraud in the competition, so we need a method that can detect the image is genuine or fake. In this study, the authors used the MD4 and SHA-384 methods to detect the originality of digital images, by using this method an image of doubtful authenticity can be found out that the image is authentic or fake.Keywords: Originality, Image, MD4 and SHA-384


2005 ◽  
Vol 1 (3-4) ◽  
pp. 345-354 ◽  
Author(s):  
Dibyendu Chakrabarti ◽  
Subhamoy Maitra ◽  
Bimal Roy

Key pre-distribution is an important area of research in Distributed Sensor Networks (DSN). Two sensor nodes are considered connected for secure communication if they share one or more common secret key(s). It is important to analyse the largest subset of nodes in a DSN where each node is connected to every other node in that subset (i.e., the largest clique). This parameter (largest clique size) is important in terms of resiliency and capability towards efficient distributed computing in a DSN. In this paper, we concentrate on the schemes where the key pre-distribution strategies are based on transversal design and study the largest clique sizes. We show that merging of blocks to construct a node provides larger clique sizes than considering a block itself as a node in a transversal design.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 118624-118639
Author(s):  
Chia-Hung Lin ◽  
Jian-Xing Wu ◽  
Pi-Yun Chen ◽  
Hsiang-Yueh Lai ◽  
Chien-Ming Li ◽  
...  

2020 ◽  
Vol 62 (5-6) ◽  
pp. 287-293
Author(s):  
Felix Günther

AbstractSecure connections are at the heart of today’s Internet infrastructure, protecting the confidentiality, authenticity, and integrity of communication. Achieving these security goals is the responsibility of cryptographic schemes, more specifically two main building blocks of secure connections. First, a key exchange protocol is run to establish a shared secret key between two parties over a, potentially, insecure connection. Then, a secure channel protocol uses that shared key to securely transport the actual data to be exchanged. While security notions for classical designs of these components are well-established, recently developed and standardized major Internet security protocols like Google’s QUIC protocol and the Transport Layer Security (TLS) protocol version 1.3 introduce novel features for which supporting security theory is lacking.In my dissertation [20], which this article summarizes, I studied these novel and advanced design aspects, introducing enhanced security models and analyzing the security of deployed protocols. For key exchange protocols, my thesis introduces a new model for multi-stage key exchange to capture that recent designs for secure connections establish several cryptographic keys for various purposes and with differing levels of security. It further introduces a formalism for key confirmation, reflecting a long-established practical design criteria which however was lacking a comprehensive formal treatment so far. For secure channels, my thesis captures the cryptographic subtleties of streaming data transmission through a revised security model and approaches novel concepts to frequently update key material for enhanced security through a multi-key channel notion. These models are then applied to study (and confirm) the security of the QUIC and TLS 1.3 protocol designs.


Sign in / Sign up

Export Citation Format

Share Document