Spray Drying of Roselle-Pineapple Juice Effects of Inlet Temperature and Maltodextrin on the Physical Properties

Author(s):  
Ahmad Farimin Ahmad Osman ◽  
Nordin Endut
2020 ◽  
Vol 28 (4) ◽  
Author(s):  
Joko Nugroho Wahyu Karyadi ◽  
Dwi Ayuni ◽  
Tsania Ayu Rohani ◽  
Devi Yuni Susanti

Nowadays, coffee has become one of the most favorable commodities for beverages, flavoring as well as for cosmetic industries. In Indonesia, coffee becomes more popular, especially among youngsters. In this study, the spray drying process was evaluated, giving the potential of how simple spray dryer can help local farmers of Indonesia to produce their coffee powders. One small scale of spray dryer was constructed with the total dimensions of 2.85 x 0.64 for length x width, with a height of 2.32 m. The spray dryer was equipped with a digital thermo regulator, the pneumatic nozzle system, and 4 finned heaters with the power of 2700 watt for each. The spray drying constructed was revealed to be able to produce coffee powders with fine quality. The inlet temperature of the drying chamber, as well as the initial Brix content of feed solution, were proven to affect the physical properties of powder produced such as moisture content, product yield, and solubility. The final moisture content of powders was ranged from 3 - 7% db, with the high product yield of the drying process, which could reach up to 70%.


2020 ◽  
Vol 49 (4) ◽  
pp. 475-482
Author(s):  
A. Dobrinčić ◽  
L. Tuđen ◽  
M. Repajić ◽  
I. Elez Garofulić ◽  
Z. Zorić ◽  
...  

The aim of this research was to obtain a high value powder of olive leaf extract (OLE) rich in polyphenols by spray drying. Since carrier, polyphenols/carrier ratio, and inlet temperature could have an impact on process yield and polyphenol retention, to define the most promising drying conditions for OLE experiment with gallic acid model solutions (GAS) was conducted. Influence of carrier type (maltodextrin, inulin, gum arabic, and their two-component blends), polyphenols/carrier ratio, and temperature on process yield of spray dried GAS was examined, and for each carrier the most promising temperature and ratio were selected. Optimal temperature for all GAS samples was 150 °C, and optimal gallic acid/carrier ratio for samples with inulin or gum arabic was 3:1, while for all other combinations it was 5:1. In OLE powder produced under these conditions, polyphenol content and physical properties (rehydration, bulk density) were determined. Mixture of maltodextrin and gum arabic resulted in the highest OLE product yield (54.48%) and the highest polyphenol retention (56.50%) obtaining good physical properties (bulk density=0.31 g ml–1, rehydration time=98 s), while use of inulin resulted in the lowest yield (32.71%), polyphenol retention (28.24%), bulk density (0.25 g ml–1), and the highest rehydration time (140 s).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luiz C. Corrêa-Filho ◽  
Maria M. Lourenço ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them,β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process ofβ-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higherβ-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study ofβ-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.


2021 ◽  
Vol 02 ◽  
Author(s):  
Thanh V. Ngo ◽  
Christopher J. Scarlett ◽  
Michael C. Bowyer ◽  
Rebecca McCullum ◽  
Quan V. Vuong

Background: S. chinensis extract contains bioactive compounds, which exhibit high antioxidant activities. However, for commercial uses, it is necessary to encapsulate the extract to protect it from degradation. Objective: This study aimed to optimise spray-drying conditions and then compare with freeze-drying to identify the most suitable conditions for encapsulation of Salacia chinensis L. root extract. Method: Three factors of spray-drying encapsulation, including maltodextrin concentration, inlet temperature and feed rate, have been tested for the impacts on the physical and phytochemical properties of S. chinensis root extract. Based on the optimal conditions, the spray-drying was then compared with freeze-drying. Results: The results showed that maltodextrin concentration, inlet temperature and feed rate had significant impacts on recovery yield, phenolics, mangiferin and antioxidant activity of the spray-dried extract. The optimal spray-drying encapsulation conditions were maltodextrin concentration of 20 %, inlet temperature of 130ºC and feed rate of 9 mL/min. Under these optimal conditions, the encapsulated extract had comparable solubility, total phenolics, mangiferin, and antioxidant activity, lower bulk density, moisture content, and water activity as compared to encapsulated extract made using the freeze-drying technique. These optimal spray-drying conditions are recommended to encapsulate the extract of S. chinensis root. Conclusion: Spray-drying was found to be more effective for encapsulation of S. chinensis root extract than freeze-drying. Therefore, spray-drying is recommended for further applications.


2015 ◽  
Vol 277 ◽  
pp. 141-146 ◽  
Author(s):  
Hyung-Yong Cho ◽  
Byeongsoo Kim ◽  
Ji-Yeon Chun ◽  
Mi-Jung Choi

2020 ◽  
Vol 859 ◽  
pp. 301-306
Author(s):  
Nattakanwadee Khumpirapang ◽  
Supreeya Srituptim ◽  
Worawut Kriangkrai

Garlic exerts its pharmacological activities; antihyperglycemic, antihyperlipidemia, antihypercholesterolemic, and antihypertensive activity. Therefore, the aim of this study was to determine and optimize the influence of the individual and interactive effect of process conditions variables on the yield of garlic extract powders by three factors and three level-Box-Behnken design under response surface methodology. Spray drying processes the transformation of a garlic juice extract into a dried powder, where usually maltodextrin (MD) as a drying agent is used. According to experimental design, the mixing of garlic juice extract (85 – 95 %w/w) and MD (5 – 15 %w/w) were dried at an air inlet temperature 110°C - 150°C and liquid feed flow rate 5 – 35 rpm. The optimum spray-drying process conditions which maximized the yield of garlic extract powder (31%w/w) were found as follows: air inlet temperature of 150°C, the liquid feed flow rate of 16 rpm, and 5 %w/w MD. The experimental values slightly closed to the corresponding predicted values. Hence, the developed model was adequate and possible to use.


Revista Fitos ◽  
2020 ◽  
Vol 14 (4) ◽  
pp. 469-475
Author(s):  
Lucas Oliveira Rodrigues ◽  
Rachel Andrade de Faria ◽  
Marcos Martins Gouvêa ◽  
Carlos Augusto de Freitas Peregrino ◽  
Elizabeth Valverde Macedo ◽  
...  

Uncaria tomentosa (Willd. ex Schult.) DC. (Cat's claw) is a plant member of the Rubiaceae family, from the Amazon region, and used in traditional medicine as raw material for phytomedicines indicated for arthritis and osteoarthritis. This study aimed to evaluate the spray drying process parameters on the properties of different extracts obtained from Uncaria tomentosa. A reduced 24-1 multifactorial design was applied to evaluate the importance of the equipment variables (pump speed, spray nozzle diameter, air inlet temperature, and atomization airflow rate) in the process. Maltodextrin and acacia gum were used as carriers in a 1:1 (m/m) ratio, considering the solid residue content of the liquid plant extract. Process yield, moisture, and hygroscopicity were evaluated as dependent variables. Higher atomization airflow rate led to higher process yield for powdered dried extracts with maltodextrin. Higher temperature led to lower moisture contents regarding powdered dried extracts with acacia gum. No variable, for any carrier, was considered significant for hygroscopicity. The best spray drying configuration for the desired characteristics (i.e. lower hygroscopicity and moisture) used the larger spray nozzle with a diameter of 1.2 mm and the higher temperature of 150 °C, with both carriers.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jiseon Park ◽  
Soon Bae Kwon ◽  
Hye Jeong Kwon

Abstract Objectives The purpose of this study was to investigate optimization of spray drying conditions for water-soluble powder using response surface methodology that is a statistical procedure used for optimization studies. Methods First, conditions of the extract used for spray drying were set. We compared heat water extraction (60–100 °C) with ethanol extraction (10–50%). After final selection of the method of extract used for spray drying, spray drying conditions were set. Independent variables included the additive contents of maltodextrin (X1), inlet temperature (X2), and air flow rate (X3). The dependent variables were yield, water absorption index (WAI) and total phenolic compounds. Results The yield was highest in 100 °C heat water extraction. The content of rutin was 29.77 mg/100 g in 90 °C heat water extraction, 28.07 mg/100 g in 100 °C heat water extraction and 24.24 mg/100 g in 10% ethanol extraction. The heat water extraction method at 100 °C was selected as an extract of the spray dryer. Statistical analysis revealed that independent variables significantly affected all the responses. A maximum yield was obtained at 15.55% of X1, 167.87 °C of X2 and 50.00 mL/min of X3. The water absorption index of asparagus increased with increasing MD ratio (X1), higher inlet temperature (X2) and higher air flow rate (X3). The total polyphenol contents of asparagus were higher when the MD addition ratio (X1) was 16.56%, the inlet temperature (X2) was higher and the air flow rate (X3) was higher. Conclusions In this study, extracts of asparagus using different extraction methods were compared for yield and spray-dried asparagus powders were investigated for their physicochemical characteristics. We were vary the range of the temperature, air flow rate, dextrin rate and set the best method for the functionality content of asparagus. Asparagus was spray - dried using 100 °C water extraction with high yield and high rutin content. The maximum spray drying yield was obtained at 15.55% of MD ratio, 167.87 °C of inlet temperature and 50.00 mL/min of air flow rate. There will be additional processed goods development made with what we have found. Funding Sources This study was supported by 2018 Regional Specialized Technology Development Project, Rural Development Administration, Republic of Korea. Supporting Tables, Images and/or Graphs


Sign in / Sign up

Export Citation Format

Share Document