Design of experimental device used for heat transfer research of single-phase and two-phase spray cooling

Author(s):  
Peng Zhang ◽  
Lin Ruan ◽  
Guobiao Gu
Author(s):  
Alex Tulchinsky ◽  
Deborah V. Pence ◽  
James A. Liburdy

In the present study, spray cooling curves are presented for two micro-structured surfaces and are compared to smooth surface results. The micro-structured surfaces consisted of bio-inspired fractal-like geometries, denoted as grooves or fins, extending in a radial direction from the center to the periphery of a 37.8 mm circular disc. Depending on the location on the surface, dimensions of groove widths and heights varied from 100 to 500 μm, and 30 to 60 μm, respectively. Fin width and height dimensions remained constant over the surface at 127 and 60 μm, respectively. Results are presented as heat flux versus the surface-to-exit spray temperature difference at each of five volume flux conditions ranging from 0.54 to 2.04 × 10−3 m3/m2-s. Convection heat transfer coefficients are also presented for each case as a function of heat flux. Results indicate that at low and high volume fluxes, an improvement in heat transfer occurs in the single phase regime for the fin geometry. Enhancement in the single phase regime does not occur at the intermediate volume flux condition. In the two phase regime for the fin structure significant enhancements, up to 50%, are observed. Whereas the groove structure performs similarly to the smooth surface in the single phase regime and exhibits large degradation in the two phase and critical heat flux regimes, up to 50%. Critical heat flux for the fin surface compares well to that of the flat surface, with a slightly increase at high volume flux conditions.


Author(s):  
Suizheng Qiu ◽  
Minoru Takahashi ◽  
Guanghui Su ◽  
Dounan Jia

Water single-phase and nucleate boiling heat transfer were experimentally investigated in vertical annuli with narrow gaps. The experimental data about water single-phase flow and boiling two-phase flow heat transfer in narrow annular channel were accumulated by two test sections with the narrow gaps of 1.0mm and 1.5mm. Empirical correlations to predict the heat transfer of the single-phase flow and boiling two-phase flow in the narrow annular channel were obtained, which were arranged in the forms of the Dittus-Boelter for heat transfer coefficients in a single-phase flow and the Jens-Lottes formula for a boiling two-phase flow in normal tubes, respectively. The mechanism of the difference between the normal channel and narrow annular channel were also explored. From experimental results, it was found that the turbulent heat transfer coefficients in narrow gaps are nearly the same to the normal channel in the experimental range, and the transition Reynolds number from a laminar flow to a turbulent flow in narrow annuli was much lower than that in normal channel, whereas the boiling heat transfer in narrow annular gap was greatly enhanced compared with the normal channel.


2020 ◽  
Author(s):  
Amin Ebrahimi ◽  
Farhad Rikhtegar Nezami ◽  
Amin Sabaghan ◽  
Ehsan Roohi

Conjugated heat transfer and hydraulic performance for nanofluid flow in a rectangular microchannel heat sink with LVGs (longitudinal vortex generators) are numerically investigated using at different ranges of Reynolds numbers. Three-dimensional simulations are performed on a microchannel heated by a constant heat flux with a hydraulic diameter of 160 μm and six pairs of LVGs using a single-phase model. Coolants are selected to be nanofluids containing low volume-fractions (0.5%–3.0%) of Al2O3 or CuO nanoparticles with different particle sizes dispersed in pure water. The employed model is validated and compared by published experimental, and single-phase and two-phase numerical data for various geometries and nanoparticle sizes. The results demonstrate that heat transfer is enhanced by 2.29–30.63% and 9.44%–53.06% for water-Al2O3 and water-CuO nanofluids, respectively, in expense of increasing the pressure drop with respect to pure-water by 3.49%–16.85% and 6.5%–17.70%, respectively. We have also observed that the overall efficiency is improved by 2.55%–29.05% and 9.78%–50.64% for water-Al2O3 and water-CuO nanofluids, respectively. The results are also analyzed in terms of entropy generation, leading to the important conclusion that using nanofluids as the working fluid could reduce the irreversibility level in the rectangular microchannel heat sinks with LVGs. No exterma (minimums) is found for total entropy generation for the ranges of parameters studied.


2021 ◽  
pp. 36-51
Author(s):  
Рустем Юсуфович Турна ◽  
Артем Михайлович Годунов

The progress of space technology is leading to more and more energy-equipped spacecraft. The International Space Station already has the capacity of solar panels of more than 100 kW. Autonomous spacecrafts and satellites (including stationary ones) have the capacity of power units of kW, in the nearest future - more than 10 kW. Forced heat transfer using single-phase liquid coolants is still considered as the main method of thermal control on high-power spacecraft (SC). Single-phase mechanically pumped fluid loop is a fully proven means of thermal control of spacecraft with a moderate heat load. A significant disadvantage of such systems is that the coolant temperature varies significantly within the loop. The temperature difference can be reduced by increasing the coolant flow rate, but for this, it is necessary to increase the pump capacity, which inevitably leads to an increase in power consumption, pipeline diameters, and weight of the system as a whole. In the case of spacecraft with high power capacity (more than 5-10 kW) and large heat transfer distances (10 m and more), a two-phase mechanically pumped fluid loop for thermal control is more preferable in terms of weight, the accuracy of thermoregulation, power consumption (and other parameters). The use of a two-phase loop (2PMPL) as a spacecraft thermal control system allows to reduce significantly mass and power consumption for own needs in comparison with a single-phase thermal control system (TCS). The effect is achieved due to the accumulation of transferred heat in the form of latent heat of vaporization and intensification of heat exchange at boiling and condensation of coolant. The article provides a critical review of published works on 2PMPL for spacecraft with high power (more than 5...10 kW) and a large heat transfer distance (more than 10...100 meters) from 1980 up to nowadays. As a result, a list of the main problems on the way of practical implementation of two-phase loops is formed.


Author(s):  
S. E. Tarasevich ◽  
A. B. Yakovlev

In paper the experimental results on a heat transfer in annular channels with continuous twisting at length at one- and two-phase flows are observed. For a flow twisting the wire was spirally coiled on the central body of the annular channel (diameter of a wire is equal to annular gap altitude). Results of experimental data of a heat transfer of authors and various researchers at a single phase flow in annular channels with a continuous twisting are analyzed. Sampling of diagnostic variables (equivalent diameter and velocity) is spent and generalizing associations for heat transfer calculation on the concave and convex surfaces in a single-phase phase are offered. Also the technique of definition of temperature of the subcooled flow boiling beginning on surfaces of annular channels with a twisting is offered. Features of boiling, origination of heat transfer crisis and results of visualization of a two-phase flow structure in annular channels with twisting are described.


Author(s):  
Lung-Yi Lin ◽  
Yeau-Ren Jeng ◽  
Chi-Chuan Wang

This study presents convective single-phase and boiling two-phase heat transfer performance of HFE-7100 coolant within multi-port microchannel heat sinks. The corresponding hydraulic diameters are 450 and 237 μm, respectively. For single-phase results, the presence of inlet/outlet locations inevitably gives rise to considerable increase of total pressure drop of a multi-port microchannel heat sink whereas has virtually no detectable influence on overall heat transfer performance provided that the effect of entrance has been accounted for. The convective boiling heat transfer coefficient for the HFE-7100 coolant shows a tremendous drop when vapor quality is above 0.6. For Dh = 450 μm, it is found that the mass flux effect on the convective heat transfer coefficient is rather small.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3963 ◽  
Author(s):  
Jia-Xin Li ◽  
Yun-Ze Li ◽  
Ben-Yuan Cai ◽  
En-Hui Li

This paper presents an air-oriented spray cooling system (SCS) integrated with a two-phase ejector for the thermal management system. Considering its aeronautical application, the spray nozzle in the SCS is an air-blast one. Heat transfer performance (HTP) of air-water spray cooling was studied experimentally on the basis of the ground-based test. Factors including pressure difference between water-inlet-pressure (WIP) and spray cavity one (PDWIC) and the spray volumetric flow rate (SVFR) were investigated and discussed. Under a constant operating condition, the cooling capacity can be promoted by the growth factors of the PDWIC and SVFR with the values from 51.90 kPa to 235.35 kPa and 3.91 L ⋅ h − 1 to 14.53 L ⋅ h − 1 , respectively. Under the same heating power, HTP is proportional to the two dimensionless parameters Reynolds number and Weber number due to the growth of droplet-impacting velocity and droplet size as the increasing of PDWIC or SVFR. Additionally, compared with the factor of the droplet size, the HTP is more sensitive to the variation in the droplet-impacting velocity. Based on the experimental data, an empirical experimental correlation for the prediction of the dimensionless parameter Nusselt number in the non-boiling region with the relative error of only ± 10 % was obtained based on the least square method.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 898 ◽  
Author(s):  
Shehnaz Akhtar ◽  
Haider Ali ◽  
Cheol Woo Park

Ice slurry is a potential secondary refrigerant for commercial refrigeration systems because of its remarkable thermal properties. It is necessary to optimize the heat transfer process of ice slurry to reduce the energy consumption of the refrigeration system. Thus, this study investigates the heat transfer performance of single-phase (aqueous solution) and two-phase (ice slurry) refrigerants in a straight horizontal tube. The numerical simulations for ice slurry were performed with ice mass fraction ranging from 5% to 20%. The effects of flow velocity and ice concentration on the heat transfer coefficient were examined. The results showed that heat transfer coefficient of ice slurry is considerably higher than those of single-phase flow, particularly at high flow velocity and ice content, where increase in heat transfer with a factor of two was observed. The present results confirmed that ice slurry heat transfer ability is considerably affected by flow velocity and ice concentration in laminar range. Moreover, the second part of this paper reports on the credibility three distinct two-phase Eulerian–Eulerian models (volume of fluid (VOF), mixture, and Eulerian) for the experimental conditions reported in the literature. All two-phase models accurately predict the thermal field at low ice mass fraction but underestimate that at high ice mass fractions. Regardless of the thermal discrepancies, the Eulerian–Eulerian models provide quite reasonable estimation of pressure drop with reference to experimental data. The numerical predictions from the VOF model are more accordant with the experimental results and the maximum percentage error is limited to ~20% and ~13% for thermal and pressure drop predictions, respectively.


Sign in / Sign up

Export Citation Format

Share Document