Prediction of Trichel pulse amplitude for smooth conductors and stranded conductors based on improved effective ionization integral

Author(s):  
Jianben Liu ◽  
Pengfei Xu
Author(s):  
Yu. E. Moskalenko ◽  
T. I. Kravchenko ◽  
Yu. V. Novozhilova

Introduction. Slow fl uctuations in the volume and pressure of liquids in the cranial cavity have been known for a long time and have been studied for more than 100 years. However, their quantitative indicators and their practical signifi cance remain unclear until now due to the diffi culties of research. Nevertheless, it was found that they were connected with the brain activity, which made it possible to use them as one of the physiological indicators in studying the problems of manned space fl ights. Goal of research — to study the possibility of using spectral analysis of slow fl uctuations of the volume of liquids inside the cranium in order to realize the quantitative assessment of their indicators with the use of modern microelectronics and computer technology.Materials and methods. In order to solve this problem we created a complex, in which rheoencephalograph-RG-01 («Mizar») was used as a converter-modulator of physiological signals into electrical oscillations. The device was connected with the ADC (Firm «ADIstrument»), Its software allows to calculate the spectrogram with a sampling rate of 128 kHz. Studies were conducted on volunteers of younger, middle and older age groups. The respiratory rate and the electrocardiography were registered together with the rheoencephalography. Electrodes were fi xed on the volonteers′ fronto-mastoid area.Results. Slow fl uctuations the cranium representan independent physiological phenomenon. The most considerable and valuable were fl uctuations in 0,1–0,3 Hz. It was found that current frequency of 100 or 200 kHz and frequency for quantization of 80–100 kHz was optimal for performing their spectrograms. The structure of such diagram consists of 4–7 peaks with amplitude of 0,4–0,7 units compared with REG pulse amplitude. They depend on age and are characterized by hemispheric asymmetry. Spectral diagrams of slow fl ucation inside cranium are representing inpendent physiological phenomenon. These fl uctuations are not connected by common origin, with heart activity and respiration. They are connected by nature with brain activity and PRM.Conclusion. Can be an informative method for diagnostic and assessment of general status of osteopathic patients well as for the assessment of mechanisms of action of some osteopathic techniques.


1987 ◽  
Vol 52 (11) ◽  
pp. 2810-2818 ◽  
Author(s):  
Emil Paleček ◽  
František Jelen ◽  
Vladimír Vetterl

The behaviour of electrochemically reducible single-strand polynucleotides (poly(adenylic acid)) and poly(cytidylic acid)) was studied by the differential (derivative) pulse polarography (DPP) and by other methods. Measurements were performed with the help of the dropping mercury electrode under various conditions specified by the pulse width, pulse amplitude, drop time etc. For the faradaic and tensammetric DPP peaks the diagnostic criteria were proposed which make it possible to classify even very small DPP peaks of double helical polynucleotides.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1302
Author(s):  
Zhiyong Wu ◽  
Lei Zhang ◽  
Tingyin Ning ◽  
Hong Su ◽  
Irene Ling Li ◽  
...  

Surface plasmon polaritons (SPPs) have been attracting considerable attention owing to their unique capabilities of manipulating light. However, the intractable dispersion and high loss are two major obstacles for attaining high-performance plasmonic devices. Here, a graphene nanoribbon gap waveguide (GNRGW) is proposed for guiding dispersionless gap SPPs (GSPPs) with deep-subwavelength confinement and low loss. An analytical model is developed to analyze the GSPPs, in which a reflection phase shift is employed to successfully deal with the influence caused by the boundaries of the graphene nanoribbon (GNR). It is demonstrated that a pulse with a 4 μm bandwidth and a 10 nm mode width can propagate in the linear passive system without waveform distortion, which is very robust against the shape change of the GNR. The decrease in the pulse amplitude is only 10% for a propagation distance of 1 μm. Furthermore, an array consisting of several GNRGWs is employed as a multichannel optical switch. When the separation is larger than 40 nm, each channel can be controlled independently by tuning the chemical potential of the corresponding GNR. The proposed GNRGW may raise great interest in studying dispersionless and low-loss nanophotonic devices, with potential applications in the distortionless transmission of nanoscale signals, electro-optic nanocircuits, and high-density on-chip communications.


2021 ◽  
Vol 11 (6) ◽  
pp. 2803
Author(s):  
Jae-Woo Kim ◽  
Dong-Seong Kim ◽  
Seung-Hwan Kim ◽  
Sang-Moon Shin

A quad, small form-factor pluggable 28 Gbps optical transceiver design scheme is proposed. It is capable of transmitting 50 Gbps of data up to a distance of 40 km using modulation signals with a level-four pulse-amplitude. The proposed scheme is designed using a combination of electro-absorption-modulated lasers, transmitter optical sub-assembly, low-cost positive-intrinsic-native photodiodes, and receiver optical sub-assembly to achieve standard performance and low cost. Moreover, the hardware and firmware design schemes to implement the optical transceiver are presented. The results confirm the effectiveness of the proposed scheme and the performance of the manufactured optical transceiver, thereby confirming its applicability to real industrial sites.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 39
Author(s):  
Masahiro Nada ◽  
Fumito Nakajima ◽  
Toshihide Yoshimatsu ◽  
Yasuhiko Nakanishi ◽  
Atsushi Kanda ◽  
...  

We discuss the structural consideration of high-speed photodetectors used for optical communications, focusing on vertical illumination photodetectors suitable for device fabrication and optical coupling. We fabricate an avalanche photodiode that can handle 100-Gbit/s four-level pulse-amplitude modulation (50 Gbaud) signals, and pin photodiodes for 100-Gbaud operation; both are fabricated with our unique inverted p-side down (p-down) design.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1128
Author(s):  
Jeanne Hersant ◽  
Pierre Ramondou ◽  
Francine Thouveny ◽  
Mickael Daligault ◽  
Mathieu Feuilloy ◽  
...  

The level of pulse amplitude (PA) change in arterial digital pulse plethysmography (A-PPG) that should be used to diagnose thoracic outlet syndrome (TOS) is debated. We hypothesized that a modification of the Roos test (by moving the arms forward, mimicking a prayer position (“Pra”)) releasing an eventual compression that occurs in the surrender/candlestick position (“Ca”) would facilitate interpretation of A-PPG results. In 52 subjects, we determined the optimal PA change from rest to predict compression at imaging (ultrasonography +/− angiography) with receiver operating characteristics (ROC). “Pra”-PA was set as 100%, and PA was expressed in normalized amplitude (NA) units. Imaging found arterial compression in 23 upper limbs. The area under ROC was 0.765 ± 0.065 (p < 0.0001), resulting in a 91.4% sensitivity and a 60.9% specificity for an increase of fewer than 3 NA from rest during “Ca”, while results were 17.4% and 98.8%, respectively, for the 75% PA decrease previously proposed in the literature. A-PPG during a “Ca+Pra” test provides demonstrable proof of inflow impairment and increases the sensitivity of A-PPG for the detection of arterial compression as determined by imaging. The absence of an increase in PA during the “Ca” phase of the “Ca+Pra” maneuver should be considered indicative of arterial inflow impairment.


Sign in / Sign up

Export Citation Format

Share Document