Leader Recognition and Tracking for Quadruped Robots

Author(s):  
Hui Zhang ◽  
Haiying Liu ◽  
Lixia Deng ◽  
Pei Wang ◽  
Xuewen Rong ◽  
...  
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2838
Author(s):  
Xiaoxing Zhang ◽  
Haoyuan Yi ◽  
Junjun Liu ◽  
Qi Li ◽  
Xin Luo

There has been a rising interest in compliant legged locomotion to improve the adaptability and energy efficiency of robots. However, few approaches can be generalized to soft ground due to the lack of consideration of the ground surface. When a robot locomotes on soft ground, the elastic robot legs and compressible ground surface are connected in series. The combined compliance of the leg and surface determines the natural dynamics of the whole system and affects the stability and efficiency of the robot. This paper proposes a bio-inspired leg compliance planning and implementation method with consideration of the ground surface. The ground stiffness is estimated based on analysis of ground reaction forces in the frequency domain, and the leg compliance is actively regulated during locomotion, adapting them to achieve harmonic oscillation. The leg compliance is planned on the condition of resonant movement which agrees with natural dynamics and facilitates rhythmicity and efficiency. The proposed method has been implemented on a hydraulic quadruped robot. The simulations and experimental results verified the effectiveness of our method.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


Author(s):  
Andrew P. Sabelhaus ◽  
Hao Ji ◽  
Patrick Hylton ◽  
Yakshu Madaan ◽  
ChanWoo Yang ◽  
...  

The Underactuated Lightweight Tensegrity Robotic Assistive Spine (ULTRA Spine) project is an ongoing effort to create a compliant, cable-driven, 3-degree-of-freedom, underactuated tensegrity core for quadruped robots. This work presents simulations and preliminary mechanism designs of that robot. Design goals and the iterative design process for an ULTRA Spine prototype are discussed. Inverse kinematics simulations are used to develop engineering characteristics for the robot, and forward kinematics simulations are used to verify these parameters. Then, multiple novel mechanism designs are presented that address challenges for this structure, in the context of design for prototyping and assembly. These include the spine robot’s multiple-gear-ratio actuators, spine link structure, spine link assembly locks, and the multiple-spring cable compliance system.


2021 ◽  
Author(s):  
Linqi Ye ◽  
Yaqi Wang ◽  
Xueqian Wang ◽  
Houde Liu ◽  
Bin Liang
Keyword(s):  

Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Shengjie Wang ◽  
Kun Wang ◽  
Chunsong Zhang ◽  
Jian S Dai

Abstract A kinetostatic approach applied to the design of a backflip strategy for quadruped robots is proposed in this paper. Inspired by legged animals and taking the advantage of the leg workspace, this strategy provides an optimal design idea for the low-cost quadruped robots to achieve self-recovery after overturning. Through kinetostatic and energy analysis, a four-stepped backflip strategy based on the selected rotation axis with minimum energy is proposed, with a process of selection, lifting, rotating, and protection. The kinematic factors that affect the backflip are investigated, along with the relationship between the design parameters of the leg and trunk being analyzed. At the end of this paper, the strategy is validated by a simulation and experiments with a prototype called DRbot, demonstrating that the strategy endows the robot a strong self-recovery ability in various terrains.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hongwu Zhu ◽  
Dong Wang ◽  
Nathan Boyd ◽  
Ziyi Zhou ◽  
Lecheng Ruan ◽  
...  

Dynamic quadrupedal locomotion over rough terrains reveals remarkable progress over the last few decades. Small-scale quadruped robots are adequately flexible and adaptable to traverse uneven terrains along the sagittal direction, such as slopes and stairs. To accomplish autonomous locomotion navigation in complex environments, spinning is a fundamental yet indispensable functionality for legged robots. However, spinning behaviors of quadruped robots on uneven terrain often exhibit position drifts. Motivated by this problem, this study presents an algorithmic method to enable accurate spinning motions over uneven terrain and constrain the spinning radius of the center of mass (CoM) to be bounded within a small range to minimize the drift risks. A modified spherical foot kinematics representation is proposed to improve the foot kinematic model and rolling dynamics of the quadruped during locomotion. A CoM planner is proposed to generate a stable spinning motion based on projected stability margins. Accurate motion tracking is accomplished with linear quadratic regulator (LQR) to bind the position drift during the spinning movement. Experiments are conducted on a small-scale quadruped robot and the effectiveness of the proposed method is verified on versatile terrains including flat ground, stairs, and slopes.


2021 ◽  
pp. 771-780
Author(s):  
Haoyuan Yi ◽  
Zhenyu Xu ◽  
Liming Zhou ◽  
Xin Luo

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Songyuan Zhang ◽  
Hongji Zhang ◽  
Yili Fu

Locomotion control for quadruped robots is commonly applied on rigid terrains with modelled contact dynamics. However, the robot traversing different terrains is more important for real application. In this paper, a single-leg prototype and a test platform are built. The Cartesian coordinates of the foot-end are obtained through trajectory planning, and then, the virtual polar coordinates in the impedance control are obtained through geometric transformation. The deviation from the planned and actual virtual polar coordinates and the expected force recognized by the ground compliance identification system are sent to the impedance controller for different compliances. At last, several experiments are carried out for evaluating the performance including the ground compliance identification, the foot-end trajectory control, and the comparison between pure position control and impedance control.


Sign in / Sign up

Export Citation Format

Share Document