Application of surface passivation techniques and an in-situ hydrogen plasma for regrowth of InP by GSMBE

Author(s):  
P.G. Hofstra ◽  
D.A. Thompson ◽  
B.J. Robinson ◽  
G. Hollinger ◽  
R. Streater
2012 ◽  
Vol 195 ◽  
pp. 321-323 ◽  
Author(s):  
Stefano Nicola Granata ◽  
Twan Bearda ◽  
Frederic Dross ◽  
Ivan Gordon ◽  
Jef Poortmans ◽  
...  

In future, thin wafers (< 100µm) will be employed in silicon heterojunction solar cell to decrease modules cost-per-Watt-Peak. However, in order to maintain excellent cell efficiency a higher device surface/volume ratio will demand stricter requirements on surface passivation. In this frame, the status of the crystalline surface (c-Si) prior to amorphous silicon (a-Si:H(i)) plasma deposition (PECVD) plays an important role: the c-Si chemical termination influences the quality of the interface layer a-Si:H(i)/c-Si, and affect the open circuit voltage (Voc). Previous studies have shown that smooth and fully hydrogenated c-Si surface [ lead to best quality heterojunction. These surfaces can be obtained by different wet cleaning procedures, usually terminated by an immersion in diluted HF. However, after this step, the wafer surface is highly reactive and can re-oxidize rapidly: contaminants presents in air can be adsorbed and affect wafer passivation [. For this reason, in-situ Hydrogen (H2) plasma cleaning prior to a-Si:H(i) deposition might be an interesting option to decrease the amount of contaminant on the surface. However, the experimental window is extremely narrow, since phenomena like epitaxial growth and ion-bombardment damage can easily occur [[ and worsen the surface passivation operated by a-Si:H(i) layers. In this contribution, we present an in-situ H2 plasma clean and show a decrease of Oxygen and Carbon on wafer surface after a short time (<10 sec), without detrimental effects on the subsequent passivation.


2003 ◽  
Vol 800 ◽  
Author(s):  
R. Jason Jouet ◽  
Andrea D. Warren ◽  
David M. Rosenberg ◽  
Victor J. Bellitto

AbstractSurface passivation of unpassivated Al nanoparticles has been realized using self assembled monolayers (SAMs). Nanoscale Al particles were prepared in solution by catalytic decomposition of H3Al•NMe3 or H3Al•N(Me)Pyr by Ti(OiPr)4 and coated in situ using a perfluoroalkyl carboxylic acid SAM. Because the Al particles are prepared using wet chemistry techniques and coated in solution, they are free of oxygen passivation. This SAM coating passivates the aluminum and seems to prevent the oxidation of the particles in air and renders the composite material, to some extent, soluble in polar organic solvents such as diethyl ether. Characterization data including SEM, TEM, TGA, and ATR-FTIR of prepared materials is presented.


2021 ◽  
Author(s):  
Om Kumar Prasad ◽  
Srikant Kumar Mohanty ◽  
ChienHung Wu ◽  
Tsung Ying Yu ◽  
K-M Chang

2009 ◽  
Vol 1210 ◽  
Author(s):  
Charlotte Platzer-Björkman ◽  
Trygve Mongstad ◽  
Smagul Zh. Karazhanov ◽  
Jan-Petter Maehlen ◽  
Erik Stensrud Marstein ◽  
...  

AbstractDeposition of MgHx (MgH2 + Mg) thin films is performed using RF reactive sputtering in argon-hydrogen plasma. Films are characterized using x-ray diffraction (XRD), scanning electron microscopy, optical and resistivity measurements. Formation of crystalline MgH2 is confirmed by XRD, but the formation of some metallic Mg in the films could not be avoided. Increased H/Mg ratio by deposition at high hydrogen flow or high total pressure gives films that oxidize within days or weeks. Deposition at elevated substrate temperature results in improved crystallinity and stability. Initial studies of MgHx for silicon surface passivation are presented.


1995 ◽  
Vol 386 ◽  
Author(s):  
J. E. Parmeter ◽  
R. J. Shul ◽  
P. A. Miller

ABSTRACTWe have used in situ Auger spectroscopic analysis to investigate the composition of InP surfaces cleaned in rf H2 plasmas and etched in rf H2/CH4/Ar plasmas. In general agreement with previous results, hydrogen plasma treatment is found to remove surface carbon and oxygen impurities but also leads to substantial surface phosphorus depletion if not carefully controlled. Low plasma exposure times and rf power settings minimize both phosphorus depletion and surface roughening. Surfaces etched in H2/CH4/Ar plasmas can show severe phosphorus depletion in high density plasmas leading to etch rates of ∼ 700 Å/min, but this effect is greatly reduced in lower density plasmas that produce etch rates of 30–400 Å/min.


Sign in / Sign up

Export Citation Format

Share Document