Fast and Cost-Effective Measurement of Contour of Large Cylinder Using Optical Methods

Author(s):  
Yu-Liang Chen ◽  
Anh-Tuan Dang ◽  
Quang-Cherng Hsu
Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3356 ◽  
Author(s):  
Abraham Gastélum-Barrios ◽  
Genaro M. Soto-Zarazúa ◽  
Axel Escamilla-García ◽  
Manuel Toledano-Ayala ◽  
Gonzalo Macías-Bobadilla ◽  
...  

The present manuscript focuses on reviewing the optical techniques proposed to monitor milk quality in dairy farms to increase productivity and reduce costs. As is well known, the quality is linked to the fat and protein concentration; in addition, this issue is crucial to maintaining a healthy herd and preventing illnesses such as mastitis and ketosis. Usually, the quality of the milk is carried out with invasive methods employing chemical reagents that increase the time analysis. As a solution, several spectroscopy optical methods have been proposed, here, the benefits such as non-invasive measurement, online implementation, rapid estimation, and cost-effective execution. The most attractive optical methods to estimate fat and protein in cow’s milk are compared and discussed considering their performance. The analysis is divided considering the wavelength operation (ultraviolet, visible, and infrared). Moreover, the weaknesses and strengths of the methods are fully analyzed. Finally, we provide the trends and a recent technique based on spectroscopy in the visible wavelength.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 256
Author(s):  
Salvatore Surdo ◽  
Martí Duocastella ◽  
Alberto Diaspro

Nanostructured surfaces and devices offer astounding possibilities for biomedical research, including cellular and molecular biology, diagnostics, and therapeutics. However, the wide implementation of these systems is currently limited by the lack of cost-effective and easy-to-use nanopatterning tools. A promising solution is to use optical methods based on photonic nanojets, namely, needle-like beams featuring a nanometric width. In this review, we survey the physics, engineering strategies, and recent implementations of photonic nanojets for high-throughput generation of arbitrary nanopatterns, along with applications in optics, electronics, mechanics, and biosensing. An outlook of the potential impact of nanopatterning technologies based on photonic nanojets in several relevant biomedical areas is also provided.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 247
Author(s):  
Dario Pumo ◽  
Francesco Alongi ◽  
Giuseppe Ciraolo ◽  
Leonardo V. Noto

Recent advances in image-based methods for environmental monitoring are opening new frontiers for remote streamflow measurements in natural environments. Such techniques offer numerous advantages compared to traditional approaches. Despite the wide availability of cost-effective devices and software for image processing, these techniques are still rarely systematically implemented in practical applications, probably due to the lack of consistent operational protocols for both phases of images acquisition and processing. In this work, the optimal experimental setup for LSPIV based flow velocity measurements under different conditions is explored using the software PIVlab, investigating performance and sensitivity to some key factors. Different synthetic image sequences, reproducing a river flow with a realistic velocity profile and uniformly distributed floating tracers, are generated under controlled conditions. Different parametric scenarios are created considering diverse combinations of flow velocity, tracer size, seeding density, and environmental conditions. Multiple replications per scenario are processed, using descriptive statistics to characterize errors in PIVlab estimates. Simulations highlight the crucial role of some parameters (e.g., seeding density) and demonstrate how appropriate video duration, frame-rate and parameters setting in relation to the hydraulic conditions can efficiently counterbalance many of the typical operative issues (i.e., scarce tracer concentration) and improve algorithms performance.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Kais Dridi ◽  
Habib Hamam

We report two new, simple, and cost-effective all-optical methods to generate ultra-wideband (UWB) impulse radio signals. The proposed methods are based on fiber-interferometric structures, where an input pulse is split and propagates along the two interferometer arms. The interference of these pulses at the output of the interferometer leads to UWB pulse generation. A theoretical analysis is provided and some relevant simulation results are presented. Large bandwidths are obtained while satisfying the requirements of the Federal Communication Commission (FCC). With these two techniques, UWB pulses can be readily generated and cost-effectively propagated through optical fibers.


Author(s):  
Alexander L. Brown

Carbon fibers are being increasingly used in composites for aircraft. They are bound together with a binder, often an epoxy. There are many grades of binders, and many different types of composites sold on the market. They are expensive. We have some donated materials of unknown type, and would like to be able to be cost-effective and use them without incurring a large cost to analyze the materials using laboratory methods. Visual inspection is not normally sufficiently accurate to be able to tell one composite from another. Optical methods that involve a broader spectrum have commonly been used to discriminate organic materials. A five-band spectral reflectometer is used to measure reflectivity of the surfaces, and is a simple way of extracting data into the infrared bands. The instrument used in these tests is less resolved than a narrow band spectrometer, but is easier to deploy because it is a hand-held device that only requires a flat surface of approximately 3 cm diameter. Reflectivity of many different composite materials, including a bismaleimide, several thermoset epoxies, and some low temperature epoxies from various manufacturers is measured. Other materials are also included to demonstrate that non-composites can be rejected by the methods. Analysis shows that the reflectometer measurements are capable of discriminating some materials, but have difficulty with discriminating others. The raw reflectivity data are likely to be helpful for future radiation modeling of composite surfaces.


Author(s):  
Lawrence M. Roth

The female reproductive tract may be the site of a wide variety of benign and malignant tumors, as well as non-neoplastic tumor-like conditions, most of which can be diagnosed by light microscopic examination including special stains and more recently immunoperoxidase techniques. Nevertheless there are situations where ultrastructural examination can contribute substantially to an accurate and specific diagnosis. It is my opinion that electron microscopy can be of greatest benefit and is most cost effective when applied in conjunction with other methodologies. Thus, I have developed an approach which has proved useful for me and may have benefit for others. In cases where it is deemed of potential value, glutaraldehyde-fixed material is obtained at the time of frozen section or otherwise at operation. Coordination with the gynecologic oncologist is required in the latter situation. This material is processed and blocked and is available if a future need arises.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Author(s):  
H. Seiler ◽  
U. Haas ◽  
K.H. Körtje

The physical properties of small metal particles reveal an intermediate position between atomic and bulk material. Especially Ag has shown pronounced size effects. We compared silver layers evaporated in high vacuum with cluster layers of small silver particles, evaporated in N2 at a pressure of about 102 Pa. The investigations were performed by electron optical methods (TEM, SEM, EELS) and by Photoacoustic (PA) Spectroscopy (gas-microphone detection).The observation of cluster layers with TEM and high resolution SEM show small silver particles with diameters of about 50 nm (Fig. 1 and Figure 2, respectively). The electron diffraction patterns of homogeneous Ag layers and of cluster layers are similar, whereas the low loss EELS spectra due to plasmon excitation are quite different. Fig. 3 and Figure 4 show first results of EELS spectra of a cluster layer of small silver particles on carbon foil and of a homogeneous Ag layer, respectively.


2012 ◽  
Vol 21 (2) ◽  
pp. 60-71 ◽  
Author(s):  
Ashley Alliano ◽  
Kimberly Herriger ◽  
Anthony D. Koutsoftas ◽  
Theresa E. Bartolotta

Abstract Using the iPad tablet for Augmentative and Alternative Communication (AAC) purposes can facilitate many communicative needs, is cost-effective, and is socially acceptable. Many individuals with communication difficulties can use iPad applications (apps) to augment communication, provide an alternative form of communication, or target receptive and expressive language goals. In this paper, we will review a collection of iPad apps that can be used to address a variety of receptive and expressive communication needs. Based on recommendations from Gosnell, Costello, and Shane (2011), we describe the features of 21 apps that can serve as a reference guide for speech-language pathologists. We systematically identified 21 apps that use symbols only, symbols and text-to-speech, and text-to-speech only. We provide descriptions of the purpose of each app, along with the following feature descriptions: speech settings, representation, display, feedback features, rate enhancement, access, motor competencies, and cost. In this review, we describe these apps and how individuals with complex communication needs can use them for a variety of communication purposes and to target a variety of treatment goals. We present information in a user-friendly table format that clinicians can use as a reference guide.


Sign in / Sign up

Export Citation Format

Share Document