Test Structure for Measuring the Selectivity in Vapour Etch Processes

Author(s):  
Markus Ronde ◽  
Anthony J. Walton ◽  
Jonathan G. Terry
Keyword(s):  
2014 ◽  
Vol E97.C (11) ◽  
pp. 1117-1123 ◽  
Author(s):  
Katsuhiro TSUJI ◽  
Kazuo TERADA ◽  
Ryota KIKUCHI

Author(s):  
P. Larré ◽  
H. Tupin ◽  
C. Charles ◽  
R.H. Newton ◽  
A. Reverdy

Abstract As technology nodes continue to shrink, resistive opens have become increasingly difficult to detect using conventional methods such as AVC and PVC. The failure isolation method, Electron Beam Absorbed Current (EBAC) Imaging has recently become the preferred method in failure analysis labs for fast and highly accurate detection of resistive opens and shorts on a number of structures. This paper presents a case study using a two nanoprobe EBAC technique on a 28nm node test structure. This technique pinpointed the fail and allowed direct TEM lamella.


Author(s):  
Jeffery P. Huynh ◽  
Joseph P. Shannon ◽  
Richard W. Johnson ◽  
Mike Santana ◽  
Thomas Y. Chu ◽  
...  

Abstract Modifications directly to a transistor’s source/drain and polysilicon gate through the backside of a SOI device were made. Contact resistance data was obtained by creating contacts through the buried oxide layer of a manufactured test structure. A ring oscillator circuit was modified and the shift in oscillator frequency was measured. Finally, cross section images of the FIB created contacts were presented in the paper to illustrate the entire process.


2014 ◽  
Vol 35 (2) ◽  
pp. 178-180 ◽  
Author(s):  
Wenjie Lu ◽  
Alex Guo ◽  
Alon Vardi ◽  
Jesus A. del Alamo

2016 ◽  
Vol 24 (6) ◽  
pp. 1051-1064 ◽  
Author(s):  
Mehdi Soleymani ◽  
Amir Hossein Abolmasoumi ◽  
Hasanali Bahrami ◽  
Arash Khalatbari-S ◽  
Elham Khoshbin ◽  
...  

Model uncertainties and actuator delays are two factors that degrade the performance of active structural control systems. A new robust control system is proposed for control of an active tuned mass damper (AMD) in a high-rise building. The controller comprises a two-loop sliding model controller in conjunction with a dynamic state predictor. The sliding model controller is responsible for model uncertainties and the state predictor compensates for the time delays due to actuator dynamics and process delay. A reduced model that is validated against experimental data was constructed and equipped with an electro-mechanical AMD system mounted on the top storey. The proposed controller was implemented in the test structure and its performance under seismic disturbances was simulated using a seismic shake table. Moreover, robustness of the proposed controller was examined via variation of the test structure parameters. The shake table test results reveal the effectiveness of the proposed controller at tackling the simulated disturbances in the presence of model uncertainties and input delay.


2012 ◽  
Vol 25 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Shunichi Watabe ◽  
Akinobu Teramoto ◽  
Kenichi Abe ◽  
Takafumi Fujisawa ◽  
Naoto Miyamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document