Constellation Design Method for Large Scale Satellite Optical Networks

Author(s):  
Mingzhu Yang ◽  
Xinyi He ◽  
Wei Wang ◽  
Yongli Zhao ◽  
Jie Zhang
2013 ◽  
Vol E96.B (7) ◽  
pp. 1845-1856
Author(s):  
Xin WANG ◽  
Filippos BALASIS ◽  
Sugang XU ◽  
Yoshiaki TANAKA

2021 ◽  
Vol 11 (7) ◽  
pp. 3165
Author(s):  
Zhigang Wang ◽  
Yu Yang

A seamless and smooth morphing leading edge has remarkable potential for noise abatement and drag reduction of civil aircraft. Variable-stiffness compliant skin based on tailored composite laminate is a concept with great potential for morphing leading edge, but the currently proposed methods have difficulty in taking the manufacturing constraints or layup sequence into account during the optimization process. This paper proposes an innovative two-step design method for a variable-stiffness compliant skin of a morphing leading edge, which includes layup optimization and layup adjustment. The combination of these two steps can not only improve the deformation accuracy of the final profile of the compliant skin but also easily and effectively determine the layup sequence of the composite layup. With the design framework, an optimization model is created for a variable-stiffness compliant skin, and an adjustment method for its layups is presented. Finally, the deformed profiles between the directly optimized layups and the adjusted ones are compared to verify its morphing ability and accuracy. The final results demonstrate that the obtained deforming ability and accuracy are suitable for a large-scale aircraft wing.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3484
Author(s):  
Tai-Lin Chang ◽  
Shun-Feng Tsai ◽  
Chun-Lung Chen

Since the affirming of global warming, most wind energy projects have focused on the large-scale Horizontal Axis Wind Turbines (HAWTs). In recent years, the fast-growing wind energy sector and the demand for smarter grids have led to the use of Vertical Axis Wind Turbines (VAWTs) for decentralized energy generation systems, both in urban and remote rural areas. The goals of this study are to improve the Savonius-type VAWT’s efficiency and oscillation. The main concept is to redesign a Novel Blade profile using the Taguchi Robust Design Method and the ANSYS-Fluent simulation package. The convex contour of the blade faces against the wind, creating sufficient lift force and minimizing drag force; the concave contour faces up to the wind, improving or maintaining the drag force. The result is that the Novel Blade improves blade performance by 65% over the Savonius type at the best angular position. In addition, it decreases the oscillation and noise accordingly. This study achieved its two goals.


Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


Author(s):  
Bryan Wesley ◽  
Fermanto Lianto

Because of the covid-19 virus pandemic in 2020, Indonesia is implementing large-scale social restrictions (PSBB) to protect healthy people from contracting the covid-19 virus. So most residents of Kampung Muka losing their jobs and unable to buy food for their daily needs. So they have to rely on the government’s non-cash food assistance program (BPNT). During the covid-19 pandemic occurred, the residents of Kampung Muka could not survive in their village and had to rely on government assistance to survive. The design method is the everydayness approach, by adding new daily activities in Kampung Muka, namely horticultural agriculture so that the residents can get a new source of livelihood. Also, horticultural agriculture is a source of food for residents during emergencies such as PSBB. Meanwhile, the commercial section is used as a place to sell food products and makes the view of horticultural agriculture a commercial attraction. Keywords: Commercial; Future; Government program; Horticultural agriculture Abstrak Dengan adanya pandemi virus Covid-19 pada tahun 2020, Indonesia memberlakukan pembatasan sosial berskala besar (PSBB) untuk melindungi orang yang sehat agar tidak tertular virus covid-19. Mengakibatkan kebanyakan warga Kampung Muka kehilangan pekerjaannya dan tidak dapat membeli pangan untuk kebutuhan hidup mereka sehari hari. Sehingga mereka harus bergantung pada program bantuan pangan non tunai (BPNT) pemerintah. Pada kondisi yang terjadi saat pandemi covid-19, warga Kampung Muka tidak dapat bertahan hidup di dalam kampung mereka sendiri dan harus bergantung pada bantuan pemerintah untuk bertahan hidup. Metode perancangan yang digunakan adalah pendekatan everydayness, dengan menambah aktivitas keseharian yang baru di Kampung Muka yaitu pertanian hortikultura, agar para warga mendapatkan sumber pencaharian yang baru. Selain itu, pertanian hortikultura juga sebagai sumber pangan para warga saat kondisi darurat seperti PSBB. Sedangkan bagian komersial, dimanfaatkan sebagai tempat untuk menjual hasil pangan dan menjadikan view pertanian hortikultura sebagai daya tarik komersial.


2021 ◽  
Vol 16 (2) ◽  
pp. 3-22
Author(s):  
Yomna K. Abdallah ◽  
Alberto T. Estevez

ABSTRACT Using bioenergy systems in architecture provides energy by means of negative emissions technologies (NETs). It plays an important role in stabilizing CO2 emissions at low levels. This depends on options of low life cycle emissions (for instance, a sustainable use of biomass residues), and on outcomes that are site-specific and rely on efficient integrated systems that convert biomass into bioenergy. The objective of this study is to develop self-sufficient systems that generate bioelectricity and offer safety, electricity generation efficiency, cost-effectiveness, waste treatment, integration in domestic use, ease of use, reproducibility and availability. The study also intends to elaborate a general design method of embedding and utilizing microorganisms into architectural elements to achieve design ecology, introducing a multidisciplinary research application through a design theory aspect. The study is based on previous experimental work conducted by the authors. Microbial fuel cell technology was applied to exploit the natural potential of a fungal strain that was identified and optimized to be implemented in microbial fuel cells (MFCs) to generate electricity. The outcomes were included in the self-sufficient cluster design that meets the aforementioned conditions. The novelty of this study is the direct use of a bioreactor of MFCs in a design application for bioelectricity production. It aims to reduce the currently high global CO2 emissions that come from the energy supply sector (47%) and from the building sector (3%), as well as to eliminate the need for large-scale infrastructure intervention. This self-sufficient bio-electricity cluster therefore outweighs other abiotic renewable energy resources such as solar energy or wind power.


Author(s):  
Yushi Shen ◽  
Yale Li ◽  
Ling Wu ◽  
Shaofeng Liu ◽  
Qian Wen

Transferring very high quality digital objects over the optical network is critical in many scientific applications, including video streaming/conferencing, remote rendering on tiled display walls, 3D virtual reality, and so on. Current data transfer protocols rely on the User Datagram Protocol (UDP) as well as a variety of compression techniques. However, none of the protocols scale well to the parallel model of transferring large scale graphical data. The existing parallel streaming protocols have limited synchronization mechanisms to synchronize the streams efficiently, and therefore, are prone to slowdowns caused by significant packet loss of just one stream. In this chapter, the authors propose a new parallel streaming protocol that can stream synchronized multiple flows of media content over optical networks through Cross-Stream packet coding, which not only can tolerate random UDP packet losses but can also aim to tolerate unevenly distributed packet loss patterns across multiple streams to achieve a synchronized throughput with reasonable coding overhead. They have simulated the approach, and the results show that the approach can generate steady throughput with fluctuating data streams of different data loss patterns and can transfer data in parallel at a higher speed than multiple independent UDP streams.


Author(s):  
Calvin C.K. Chan

Wavelength division multiplexed passive optical network has emerged as a promising solution to support a robust and large-scale next generation optical access network. It offers high-capacity data delivery and flexible bandwidth provisioning to all subscribers, so as to meet the ever-increasing bandwidth requirements as well as the quality of service requirements of the next generation broadband access networks. The maturity and reduced cost of the WDM components available in the market are also among the major driving forces to enhance the feasibility and practicality of commercial deployment. In this chapter, the author will provide a comprehensive discussion on the basic principles and network architectures for WDM-PONs, as well as their various enabling technologies. Different feasible approaches to support the two-way transmission will be discussed. It is believed that WDM-PON is an attractive solution to realize fiber-to-the-home (FTTH) applications.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6570
Author(s):  
Chang Sun ◽  
Yibo Ai ◽  
Sheng Wang ◽  
Weidong Zhang

Detecting and classifying real-life small traffic signs from large input images is difficult due to their occupying fewer pixels relative to larger targets. To address this challenge, we proposed a deep-learning-based model (Dense-RefineDet) that applies a single-shot, object-detection framework (RefineDet) to maintain a suitable accuracy–speed trade-off. We constructed a dense connection-related transfer-connection block to combine high-level feature layers with low-level feature layers to optimize the use of the higher layers to obtain additional contextual information. Additionally, we presented an anchor-design method to provide suitable anchors for detecting small traffic signs. Experiments using the Tsinghua-Tencent 100K dataset demonstrated that Dense-RefineDet achieved competitive accuracy at high-speed detection (0.13 s/frame) of small-, medium-, and large-scale traffic signs (recall: 84.3%, 95.2%, and 92.6%; precision: 83.9%, 95.6%, and 94.0%). Moreover, experiments using the Caltech pedestrian dataset indicated that the miss rate of Dense-RefineDet was 54.03% (pedestrian height > 20 pixels), which outperformed other state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document