A gate drive circuit of power MOSFETs and IGBTs for low switching losses

Author(s):  
Toshihisa Shimizu ◽  
Keiji Wada
Author(s):  
M. S. Chye ◽  
J. A. Soo ◽  
Y. C. Tan ◽  
M. Aizuddin ◽  
S. Lee ◽  
...  

This paper presents a single-phase multilevel inverter (MLI) with simpler basic unit cells. The proposed MLI is able to operate in two modes, i.e. charge mode to charge the batteries, and inverter mode to supply AC power to load, and therefore, it is inherently suitable for photovoltaic (PV) power generation applications. The proposed MLI requires lower number of power MOSFETs and gate driver units, which will translate into higher cost saving and better system reliability. The power MOSFETs in the basic unit cells and H-bridge module are switched at near fundamental frequency, i.e. 100 Hz and 50 Hz, respectively, resulting in lower switching losses. For low total harmonic distortion (THD) operation, a deep scanning method is employed to calculate the switching angles of the MLI. The lowest THD obtained is 8.91% at modulation index of 0.82. The performance of the proposed MLI (9-level) has been simulated and evaluated experimentally. The simulation and experimental results are in good agreement and this confirms that the proposed MLI is able to produce an AC output voltage with low THD.


2020 ◽  
Vol 13 (14) ◽  
pp. 2960-2970
Author(s):  
Wesley Josias de Paula ◽  
Gabriel Henrique Monteiro Tavares ◽  
Guilherme Marcio Soares ◽  
Pedro Santos Almeida ◽  
Henrique Antonio Carvalho Braga

2016 ◽  
Vol 858 ◽  
pp. 885-888 ◽  
Author(s):  
Yuichiro Nanen ◽  
Masatoshi Aketa ◽  
Yuki Nakano ◽  
Hirokazu Asahara ◽  
Takashi Nakamura

Dynamic and static characteristics of SiC power MOSFETs at high temperature up to 380°C were investigated. Investigated devices have exhibited a behavior as a normally-off MOSFET even at such high temperature as 380°C. Temperature dependence of the MOSFET characteristics are reported in this paper, such as threshold voltage (VTH), on-resistance, internal gate resistance, and turn-on and turn-off losses (EON, EOFF). EON decreases and EOFF increases with increased temperature. Temperature dependence of switching losses is affected by transfer time of VDS, which was mainly determined from VTH.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Sibylle Dieckerhoff ◽  
Thies Wernicke ◽  
Christine Kallmayer ◽  
Stephan Guttowski ◽  
Herbert Reichl

The impact of a reduced package stray inductance on the switching performance of fast power MOSFETs is discussed applying advanced 3D packaging technologies. Starting from an overview over new packaging approaches, a solder bump technology using a flexible PI substrate is exemplarily chosen for the evaluation. Measurement techniques to determine the stray inductance are discussed and compared with a numerical solution based on the PEEC method. Experimental results show the improvement of the voltage utilization while there is only a slight impact on total switching losses.


2012 ◽  
Vol 717-720 ◽  
pp. 1307-1310
Author(s):  
Krishna Shenai ◽  
Krushal Shah

Simple, physics-based, and accurate circuit models are reported for GaN power HEMTs and inductors; these models are then used to design high-performance chip-scale synchronous buck (SB) power converters to provide agile point-of-load (POL) low-voltage ( down to 1V) high-current (up to 10A) power to portable mobile devices from a battery. Excellent agreement between the measured and simulated results is demonstrated for load regulation for a 19V/1.2V, 800 kHz SB converter; for comparison, the same converter performance using the best commercially available state-of-the-art silicon power MOSFETs is also evaluated. It is shown that the conventional approach used for estimating power loss of a SB power converter is in error; a new application-specific Figure of Merit (FOM) for power switches is proposed that accounts for both input and output switching losses.


Sign in / Sign up

Export Citation Format

Share Document