Hybrid Modelling for the Failure Analysis of SiC Power Transistors on Time-Domain Reflectometry Data

Author(s):  
Simon Kamm ◽  
Kanuj Sharma ◽  
Ingmar Kallfass ◽  
Nasser Jazdi ◽  
Michael Weyrich
Author(s):  
Kendall Scott Wills ◽  
Omar Diaz de Leon ◽  
Kartik Ramanujachar ◽  
Charles P. Todd

Abstract In the current generations of devices the die and its package are closely integrated to achieve desired performance and form factor. As a result, localization of continuity failures to either the die or the package is a challenging step in failure analysis of such devices. Time Domain Reflectometry [1] (TDR) is used to localize continuity failures. However the accuracy of measurement with TDR is inadequate for effective localization of the failsite. Additionally, this technique does not provide direct 3-Dimenstional information about the location of the defect. Super-conducting Quantum Interference Device (SQUID) Microscope is useful in localizing shorts in packages [2]. SQUID microscope can localize defects to within 5um in the X and Y directions and 35um in the Z direction. This accuracy is valuable in precise localization of the failsite within the die, package or the interfacial region in flipchip assemblies.


Author(s):  
Bilal Abd-AlRahman ◽  
Corey Lewis ◽  
Todd Simons

Abstract A failure analysis application utilizing scanning acoustic microscopy (SAM) and time domain reflectometry (TDR) for failure analysis has been developed to isolate broken stitch bonds in thin shrink small outline package (TSSOP) devices. Open circuit failures have occurred in this package due to excessive bending of the leads during assembly. The tools and their specific application to this technique as well as the limitations of C-SAM, TDR and radiographic analyses are discussed. By coupling C-SAM and TDR, a failure analyst can confidently determine whether the cause of an open circuit in a TSSOP package is located at the stitch bond. The root cause of the failure was determined to be abnormal mechanical stress placed on the pins during the lead forming operation. While C-SAM and TDR had proven useful in the analysis of TSSOP packages, it can potentially be expanded to other wire-bonded packages.


Author(s):  
Teoh King Long ◽  
Ko Yin Fern

Abstract In time domain reflectometry (TDR), the main emphasis lies on the reflected waveform. Poor probing contact is one of the common problems in getting an accurate waveform. TDR probe normalization is essential before measuring any TDR waveforms. The advantages of normalization include removal of test setup errors in the original test pulse and the establishment of a measurement reference plane. This article presents two case histories. The first case is about a Plastic Ball Grid Array package consisting of 352 solder balls where the open failure mode was encountered at various terminals after reliability assessment. In the second, a three-digit display LED suspected of an electrical short failure was analyzed using TDR as a fault isolation tool. TDR has been successfully used to perform non-destructive fault isolation in assisting the routine failure analysis of open and short failure. It is shown to be accurate and reduces the time needed to identify fault locations.


Author(s):  
Damion T. Searls ◽  
Anura Don ◽  
Emilie Dy ◽  
Deepak Goyal

Abstract Detecting failure in electrical connectivity at the component packaging level is a major expenditure of the industry’s failure analysis (FA) resources. These package failures can result from material/manufacturing excursions, stress tests, and/or customer returns. However, many of the methods employed currently (such as X-ray or crosssectioning) can fall short in terms of throughput time, or success rate. Moreover, many FA techniques can be destructive and therefore leave the sample useless for subsequent tests. On the other hand, time domain reflectometry (TDR) can be used as a component packaging level FA tool which meets the needs of quickly, precisely, and non-destructively locating electrical connectivity problems in signal traces. Once the failure location has been pin pointed, other FA methods (X-ray, cross-section, etc.) can be used more easily to determine why the failure occurred. Since TDR testing involves no physical preparation, the sample will be completely intact for subsequent tests. TDR uses a low voltage, low current, and very short rise time voltage pulse to determine the impedance of a signal trace as a function of time. With a waveform of trace impedance versus time, not only can the presence of a failure be detected, but the distance along the trace to the anomaly can also be quickly determined. This paper presents TDR as a useful tool for package level failure analysis labs. The paper proposes one set of solutions for enabling effective TDR analysis (e.g., TDR test fixturing), and discusses some TDR methodologies for detecting and locating anomalies. The methodologies will be illustrated using three example cases that reflect some commonly used packaging technologies: Flip-Chip Organic Land Grid Array (FC-OLGA), Flip-Chip Pin Grid Array (FC-PGA), and Plastic Land Grid Array (PLGA).


2021 ◽  
Author(s):  
Kanuj Sharma ◽  
Simon Kamm ◽  
Valentyna Afanasenko ◽  
Kevin Munoz Baron ◽  
Ingmar Kallfass

Author(s):  
Christopher C. Basilioa ◽  
Hieu Trong Nguyenb ◽  
Arlene Aguinaldoc ◽  
Jan Paul Arboledac ◽  
Richmond Angd ◽  
...  

Abstract This paper describes the successful effort to develop the Time Domain Reflectometry (TDR) tool by automating the equipment process. The current challenges in the tool usage brought about by miniaturization in the package technology presented itself as an opportunity for the tool improvement. The authors were able to devise an automated TDR system which is ergonomically safe, yielded a significant through put time reduction and provide a consistent and accurate result. This comes at a lower cost in comparison to the current system available in the Virtual Factory (VF).


Author(s):  
Daniel C. Nuez

Abstract The growing popularity of 2.5D SSIT (Stacked Silicon Interconnect Technology) & 3D package technology in the IC industry had made it more challenging for manufacturers and packaging assembly sites to perform failure analysis and identifying the root causes of failures. There had been some technical papers written on various failure analysis techniques on 2.5D SSIT and 3D IC packages using a variety of equipment for detecting and localizing failures [1, 2]. This paper explains a non-evasive, non-destructive approach of localizing failures on a 2.5D SSIT package by identifying and recognizing certain waveform patterns that the failing devices exhibit in the scanning acoustic microscope A-Scan and in Time domain reflectometry. There are noticeable waveform patterns that an analyst can recognize and used to determine certain types of failure mechanisms that may be present in the device. Please note that it is very important to use the exact same type of package sample when characterizing and comparing waveform patterns as package variability from vendor to vendor and material contents can certainly affect the results.


Sign in / Sign up

Export Citation Format

Share Document