Time dependent dielectric breakdown and stress induced leakage current characteristics of 8Å EOT HfO2 N-MOSFETS

Author(s):  
Robert O'Connor ◽  
Greg Hughes ◽  
Thomas Kauerauf ◽  
Lars-Ake Ragnarsson
2021 ◽  
Vol 68 (5) ◽  
pp. 2220-2225
Author(s):  
Stefano Dalcanale ◽  
Michael J. Uren ◽  
Josephine Chang ◽  
Ken Nagamatsu ◽  
Justin A. Parke ◽  
...  

1993 ◽  
Vol 303 ◽  
Author(s):  
G. W. Yoon ◽  
A. B. Joshi ◽  
J. Kim ◽  
D. L. Kwong

ABSTRACTIn this paper, a detailed reliability investigation is presented for ultra-thin tunneling (∼50 Å) oxides grown in N2O ambient using rapid thermal processing (RTP). These N2Oss-oxides are compared with oxides of identical thickness grown in O2 ambient by RTP. The reliability investigations include time-dependent dielectric breakdown as well as stress-induced leakage current in MOS capacitors with these gate dielectrics. Results show that ultra-thin N2O-oxides show much improved reliability as compared to oxide grown in O2 ambient.


2003 ◽  
Vol 766 ◽  
Author(s):  
Ahila Krishnamoorthy ◽  
N.Y. Huang ◽  
Shu-Yunn Chong

AbstractBlack DiamondTM. (BD) is one of the primary candidates for use in copper-low k integration. Although BD is SiO2 based, it is vastly different from oxide in terms of dielectric strength and reliability. One of the main reliability concerns is the drift of copper ions under electric field to the surrounding dielectric layer and this is evaluated by voltage ramp (V-ramp) and time dependent dielectric breakdown (TDDB). Metal 1 and Metal 2 intralevel comb structures with different metal widths and spaces were chosen for dielectric breakdown studies. Breakdown field of individual test structures were obtained from V-ramp tests in the temperature range of 30 to 150°C. TDDB was performed in the field range 0.5 – 2 MV/cm. From the leakage between combs at the same level (either metal 1 or metal 2) Cu drift through SiC/BD or SiN/BD interface was characterized. It was found that Cu/barrier and barrier/low k interfaces functioned as easy paths for copper drift thereby shorting the lines. Cu/SiC was found to provide a better interface than Cu/SiN.


Sign in / Sign up

Export Citation Format

Share Document