scholarly journals Pull strength evaluation of Sn-Pb solder joints made to Au-Pt-Pd conductor on low-temperature co-fired ceramic

Author(s):  
P. Vianco ◽  
F. Uribe ◽  
G. Zender
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Gyuwon Jeong ◽  
Dong-Yurl Yu ◽  
Seongju Baek ◽  
Junghwan Bang ◽  
Tae-Ik Lee ◽  
...  

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu–Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn–58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.


2008 ◽  
Vol 580-582 ◽  
pp. 243-246 ◽  
Author(s):  
Hiroshi Nishikawa ◽  
Akira Komatsu ◽  
Tadashi Takemoto

The reaction between Sn-Ag (-Co) solder and electroless Ni-P plating was investigated in order to clarify the effect of the addition of Co to Sn-Ag solder on the formation of intermetallic compound (IMC) at the interface and the joint strength at the interface. Sn-Ag-Co solder was specially prepared. The results show that there is little effect of the addition of Co to the Sn-Ag solder on the IMC formation and the thickness of the IMC at the interface. For the pull strength of the solder bump joint, the addition of Co to the solder didn’t strongly affect the pull strength of the solder joints, but it affected the fracture mode of the solder joints.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000644-000648
Author(s):  
Mary Liu ◽  
Wusheng Yin

Solder joint encapsulant adhesives have been successfully used to enhance the strength of solder joints and improve thermal cycling as well as drop performance in finished products. The use of solder joint encapsulant adhesives can eliminate the need for underfill materials and the underfill process altogether, thus simplifying rework, which results in a lower cost of ownership. Solder joint encapsulant adhesives include: low temperature and high temperature solder joint encapsulant adhesives, and their derivatives. Each solder joint encapsulant adhesive has: unfilled and filled solder joint encapsulant adhesives, and solder joint encapsulant paste. Each solder joint encapsulant product has been designed for different applications. In this paper, we are going to discuss the details and future of solder joint encapsulant adhesives.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 791 ◽  
Author(s):  
Kaipeng Wang ◽  
Fengjiang Wang ◽  
Ying Huang ◽  
Kai Qi

Sn-58Bi eutectic solder is the most recommended low temperature Pb-free solder but is also limited from the interfacial embrittlement of Bi segregation. Since the quaternary Sn-38Bi-1.5Sb-0.7Ag solder provides a similar melting point as Sn-58Bi eutectic, this paper systematically investigated the properties of this solder from wettability, bulk tensile properties, interfacial microstructure in solder joints with a Cu substrate, interfacial evolution in joints during isothermal aging and the shear strength on ball solder joints with effect of aging conditions. The results were also compared with Sn-58Bi solder. The wettability of solder alloys was evaluated with wetting balance testing, and the quaternary Sn-38Bi-1.5Sb-0.7Ag solder had a better wettability than Sn-58Bi solder on the wetting time. Tensile tests on bulk solder alloys indicated that the quaternary Sn-38Bi-1.5Sb-0.7Ag solder had a higher tensile strength and similar elongation compared with Sn-58Bi solder due to the finely distributed SnSb and Ag3Sn intermetallics in the solder matrix. The tensile strength of solder decreased with a decrease in the strain rate and with an increase in temperature, while the elongation of solder was independent of the temperature and strain rate. When soldering with a Cu substrate, a thin Cu6Sn5 intermetallic compound (IMC) is produced at the interface in the solder joint. Measurement on IMC thickness showed that the quaternary Sn-38Bi-1.5Sb-0.7Ag had a lower IMC growth rate during the following isothermal aging. Ball shear test on solder joints illustrated that the quaternary Sn-38Bi-1.5Sb-0.7Ag solder joints had higher shear strength than Sn-58Bi solder joints. Compared with the serious deterioration on shear strength of Sn-58Bi joints from isothermal aging, the quaternary Sn-38Bi-1.5Sb-0.7Ag solder joints presented a superior high temperature stability. Therefore, the quaternary Sn-38Bi-1.5Sb-0.7Ag solder provides better performances and the possibility to replace Sn-58Bi solder to realize low temperature soldering.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Wen-Ren Jong ◽  
Hsin-Chun Tsai ◽  
Hsiu-Tao Chang ◽  
Shu-Hui Peng

In this study, the effects of the temperature cyclic loading on three lead-free solder joints of 96.5Sn–3.5Ag, 95.5Sn–3.8Ag-0.7Cu, and 95.5Sn–3.9Ag-0.6Cu bumped wafer level chip scale package (WLCSP) on printed circuit board assemblies are investigated by Taguchi method. The orthogonal arrays of L16 is applied to examine the shear strain effects of solder joints under five temperature loading parameters of the temperature ramp rate, the high and low temperature dwells, and the dwell time of both high and low temperatures by means of three simulated analyses of creep, plastic, and plastic-creep behavior on the WLCSP assemblies. It is found that the temperature dwell is the most significant factor on the effects of shear strain range from these analyses. The effect of high temperature dwell on the shear strain range is larger than that of low temperature dwell in creep analysis, while the effect of high temperature dwell on the shear strain range is smaller than that of low temperature dwell in both plastic and plastic-creep analyses.


Sign in / Sign up

Export Citation Format

Share Document