Influence of charging conditions of porous polytetrafluoroethylene (PTFE) film electrets on the permeability of membranes

Author(s):  
Z. Xia ◽  
A. Buchtemann ◽  
R. Danz ◽  
A. Wedel ◽  
J. Jian
Keyword(s):  
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1111
Author(s):  
Changmei Lin ◽  
Duo Chen ◽  
Zifeng Hua ◽  
Jun Wang ◽  
Shilin Cao ◽  
...  

Cellulose paper has been functionalized by nanoparticles such as Ag nanoparticles, TiO2, and BaTiO3 for versatile applications including supercapacitor, sensors, photoactivity, and packaging. Herein, zinc oxide (ZnO) nanosheet-modified paper (ZnO@paper) with excellent antibacterial properties was fabricated via a mild ZnCl2-urea eutectic solvent. In this proposed method, cellulose fibers as the raw material for ZnO@paper were treated by an aqueous solvent of ZnCl2-urea; the crystalline region was destroyed and [ZnCl]+-based cations were adsorbed on the surface of cellulose fibers, facilitating more ZnO growth on ZnO@paper. A flexible paper-based triboelectric nanogenerator (P-TENG) was made of ZnO@paper paired with a PTFE film. The P-TENG presents high triboelectric output performance and antibacterial activity. For instance, the output voltage and current of the P-TENG were 77 V and 0.17 μA, respectively. ZnO@paper showed excellent antibacterial activity against E. coli and S. aureus, suggesting that a P-TENG can restrain and kill the bacteria during the working process. The results also indicated that ZnO could improve the surface roughness of cellulose paper, enhancing the output performance of a flexible P-TENG. In addition, the potential application of a P-TENG-based pressure sensor for determining human motion information was also reported. This study not only produced a high-performance P-TENG for fabricating green and sustainable electronics, but also provides an effective and novel method for ZnO@paper preparation.


Author(s):  
JungHwa Oh ◽  
DaeYoung Kong ◽  
SungBo Seo ◽  
DongYoung Kim ◽  
HwaMin Kim ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1173
Author(s):  
Ilze Beverte ◽  
Ugis Cabulis ◽  
Sergejs Gaidukovs

As a non-metallic composite material, widely applied in industry, rigid polyurethane (PUR) foams require knowledge of their dielectric properties. In experimental determination of PUR foams’ dielectric properties protection of one-side capacitive sensor’s active area from adverse effects caused by the PUR foams’ test objects has to be ensured. In the given study, the impact of polytetrafluoroethylene (PTFE) films, thickness 0.20 mm and 0.04 mm, in covering or simulated coating the active area of one-side access capacitive sensor’ electrodes on the experimentally determined true dielectric permittivity spectra of rigid PUR foams is estimated. Penetration depth of the low frequency excitation field into PTFE and PUR foams is determined experimentally. Experiments are made in order to evaluate the difference between measurements on single PUR foams’ samples and on complex samples “PUR foams + PTFE film” with two calibration modes. A modification factor and a small modification criterion are defined and values of modifications are estimated in numerical calculations. Conclusions about possible practical applications of PTFE films in dielectric permittivity measurements of rigid PUR foams with one-side access capacitive sensor are made.


2001 ◽  
pp. 1664-1667
Author(s):  
Glen W. McLaughlin ◽  
Katie Braden ◽  
Benjamin Franc ◽  
Gregory T. A. Kovacs

2021 ◽  
Author(s):  
Ravi Kumar Cheedarala ◽  
Jung Il Song

Abstract The development of highly durable, stretchable, and steady triboelectric nanogenerators (TENGs) is highly desirable to satisfy the tight requirement of energy demand. Here, we presented a novel integrated polymeric membrane that is designed by PEDOT:PSSa-naphthalene sulfonated polyimide (PPNSP)-EMI. BF4 Electronic skin (e-skin) for potential TENG applications. The proposed TENG e-skin is fabricated by an interconnected architecture with push-pull 3D ionic electrets that can threshold the transfer of charges through an ion-hopping mechanism for the generation of a higher output voltage (Voc) and currents (Jsc) against an electronegative PTFE film. PPNSP was synthesized from the condensation of naphthalene-tetracarboxylic dianhydride, 2, 2’-benzidine sulfonic acid, and 4,4’diaminodiphenyl ether through an addition copolymerization protocol, and PEDOT:PSSa was subsequently deposited using the dip-coating method. Porous networked PPNSP e-skin with continuous ion transport nano-channels is synthesized by introducing simple and strong molecular push-pull 3D interactions via intrinsic ions. In addition, EMI. BF4 ionic liquid (IL) is doped inside the PPNSP skin to interexchange ions to enhance the potential window for higher output Voc and Iscs. In this article, we investigated the push-pull dynamic interactions between PPNSP-EMI.BF4 e-skin and PTFE and tolerable output performance. The novel PPNSP- EMI.BF4 e-skin TENG produced upto 49.1 V and 1.03 µA at 1 Hz, 74 V and 1.45 µA at 2 Hz, 122.3 V and 2.21 µA at 3 Hz and 171 V and 3.6 µA at 4 Hz, and 195 V and 4.43 µA at 5 Hz, respectively. The proposed novel TENG device was shown to be highly flexible, highly durable, commercially viable, and a prospective candidate to produce higher electrical charge outputs at various applied frequencies.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4947
Author(s):  
Zhihua Wang ◽  
Fengduo Zhang ◽  
Tao Yao ◽  
Na Li ◽  
Xia Li ◽  
...  

Rotation detection is widely applied in industries. The current commonly used rotation detection system adopts a split structure, which requires stringent installation requirements and is difficult to miniaturize. This paper proposes a single-piece self-powered non-contact sensor with an interdigital sensitive layer to detect the rotation of objects. The electric field generated between a polyurethane (PU) film and a polytetrafluoroethylene (PTFE) film is utilized for perceiving the rotation. The surface of the PU film is subjected to wet etching with sulfuric acid to increase the surface area and charge density. Through finite element analysis and experimental testing, the effects of the areas of the sensitive films as well as the horizontal and vertical distances between them on the output voltage are analyzed. Tests are performed on adjustable-speed motors, human arms, and robotic arms. The results show that the sensor can detect the speed, the transient process of rotation, and the swing angle. The proposed rotation sensor has broad application prospects in the fields of mechanical automation, robotics, and Internet of Things (IoT).


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 388 ◽  
Author(s):  
Waseem Akram ◽  
Amer Farhan Rafique ◽  
Nabeel Maqsood ◽  
Afzal Khan ◽  
Saeed Badshah ◽  
...  

Polytetrafluoroethylene (PTFE) was coated on 316L stainless steel (SS) substrate through a spin coating technique to enhance its corrosion resistance properties in hydrochloric acid (HCl) and nitric acid (HNO3) medium. Scanning electron microscopy (SEM) revealed the morphology of the coated and uncoated substrates and showed a uniform and crack-free PTFE coating on 316L SS substrate, while a damaged surface with thick corrosive layers was observed after the electrochemical test on the uncoated sample. However, an increased concentration of HCl and HNO3 slightly affected the surface morphology by covering the corrosive pits. An atomic force microscope (AFM) showed that the average surface roughness on 316L SS and PTFE coating was 26.3 nm and 24.1 nm, respectively. Energy dispersive X-ray spectroscopy (EDS) was used for the compositional analysis, which confirmed the presence of PTFE coating. The micro Vickers hardness test was used to estimate the hardness of 316L SS and PTFE-coated substrate, while the scratch test was used to study the adhesion properties of PTFE coating on 316L SS. The anticorrosion measurements of 316L SS and PTFE-coated substrates were made in various HCl and HNO3 solutions by using the electrochemical corrosion test. A comparison of the corrosion performance of PTFE-coated substrate with that of bare 316L SS substrate in HCl medium showed a protection efficiency (PE) of 96.7%, and in the case of HNO3 medium, the PE was 99.02%, by slightly shifting the corrosion potential of the coated sample towards the anodic direction.


MRS Advances ◽  
2020 ◽  
Vol 5 (54-55) ◽  
pp. 2753-2762
Author(s):  
Mathew Brownell ◽  
Arun K. Nair

AbstractPolytetrafluoroethylene (PTFE) film is observed to increase surface roughness during annealing. Longer annealing times leads to greater surface roughness. The coefficient of friction of PTFE film is affected by the shape of microscale sized particles on the film surface. In this study, we investigate the coefficient of friction of PTFE films using a coarse-grained molecular dynamics model based on experimental observations. We observe how the variation in PTFE chain length and film density affect the topography of PTFE films. We also investigate how these properties of PTFE, and the indenter radius affect the coefficient of friction observed during surface scratch. We find that short PTFE chain lengths create a dense film with greater particle spacing, but longer chains form a mesh structure which reduces the density and creates overlapping portions of particles in the film. We develop a convolutional neural network to classify PTFE film surface and predict the coefficient of friction of a modeled film based solely on the equilibrated film topography. The accuracy of the network was seen to increase when the density and images of internal fiber orientation were added as input features. These results indicate that the coefficient of friction of PTFE films in part is governed by the internal structure of the film.


Sign in / Sign up

Export Citation Format

Share Document