An experimental study of the enhancement of air-cooling limits for telecom/datacom heat sinks applications using an impinging air jet

Author(s):  
E. Sansoucy ◽  
P.H. Oosthuizen ◽  
G. Refai-Ahmed
2005 ◽  
Vol 128 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Eric Sansoucy ◽  
Patrick H. Oosthuizen ◽  
Gamal Refai-Ahmed

An experimental study was conducted to investigate the heat transfer from a parallel flat plate heat sink under a turbulent impinging air jet. A horizontal nozzle plate confined the target surface. The jet was discharged from a sharp-edged nozzle in the nozzle plate. Average Nusselt numbers are reported for Pr=0.7, 5000⩽Re⩽30,000, L∕d=2.5, and 0.833 at H∕d=3 where L, H, and d define the length of the square heat source, nozzle-to-target spacing, and nozzle diameter, respectively. Tests were also conducted for an impinging flow over a flat plate, flush with the top surface of the target plate. The average Nusselt numbers from the heat sink were compared to those for a flat plate to determine the overall performance of the heat sink in a confined impingement arrangement. The experimental results were compared with the numerical predictions obtained in an earlier study. Although the average Nusselt numbers obtained from numerical simulations differed from the experimental measurements by 18%, the disagreement is much less significant when related to the junction temperature. Under typical conditions, it was shown that such discrepancy in the Nusselt number lead to an error of 6% in the prediction of the junction temperature of the device.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Vanessa Egan ◽  
Jason Stafford ◽  
Pat Walsh ◽  
Ed Walsh

An experimental study is performed on one of the smallest commercially available miniature fans, suitable for cooling portable electronic devices, used in conjunction with both finned and finless heat sinks of equal exterior dimensions. The maximum overall footprint area of the cooling solution is 534mm2 with a profile height of 5 mm. Previous analysis has shown that due to fan exit angle, flow does not enter the heat sinks parallel to the fins or bounding walls. This results in a nonuniform flow rate within the channels of the finned and finless heat sinks along with impingement of the flow at the entrance giving rise to large entrance pressure losses. In this paper straightening diffusers were attached at the exit of the fan, which resulted in aligning the flow entering the heat sinks with the fins and channel walls. Detailed velocity measurements were obtained using particle image velocimetry, which provided a further insight into the physics of the flow in such miniature geometries and in designing the straightening diffusers. The thermal analysis results indicate that the cooling power of the solution is increased by up to 20% through the introduction of a diffuser, hence demonstrating the need for integrated fan and heat sink design of low profile applications.


Author(s):  
M. Zugic ◽  
J. R. Culham ◽  
P. Teertstra ◽  
Y. Muzychka ◽  
K. Horne ◽  
...  

Compact, liquid cooled heat sinks are used in applications where high heat fluxes and boundary resistance preclude the use of more traditional air cooling techniques. Four different liquid cooled heat sink designs, whose core geometry is formed by overlapped ribbed plates, are examined. The objective of this analysis is to develop models that can be used as design tools for the prediction of overall heat transfer and pressure drop of heat sinks. Models are validated for Reynolds numbers between 300 and 5000 using experimental tests. The agreement between the experiments and the models ranges from 2.35% to 15.3% RMS.


Author(s):  
Amir Allaf-Akbari ◽  
A. Gordon L. Holloway ◽  
Joseph Hall

The current experimental study investigates the effect of longitudinal core flow on the formation and structure of a trailing vortex. The vortex is generated using four airfoils connected to a central hub through which a jet flow is added to the vortex core. Time averaged vorticity, circumferential velocity, and turbulent kinetic energy are studied. The statistics of vortex wandering are identified and corrections applied to the vorticity distribution. The vortex generator used in this study was built on the basis of the design described by Beninati et al. [1]. It uses four NACA0012 airfoils connected to a central hub. The wings orientation can be adjusted such that each contributes to a strong trailing vortex on the center of the test section. The vortex generator also had the capability to deliver an air jet directed longitudinally through a hole in the hub at the joint of the airfoils. Tests were done without the jet and with the air jet at jet velocities of 10 and 20 m/s. Planar PIV was used to measure the velocity field in the vicinity of the vortex core. The measurements were taken at 3 chords behind the vortex generator.


Author(s):  
Johnny S. Issa ◽  
Alfonso Ortega

An experimental investigation was conducted to explore the flow behavior, pressure drop, and heat transfer due to free air jet impingement on square in-line pin fin heat sinks (PFHS) mounted on a plane horizontal surface. A parametrically consistent set of aluminum heat sinks with fixed base dimension of 25 × 25 mm was used, with pin heights varying between 12.5 mm and 22.5 mm, and fin thickness between 1.5 mm and 2.5 mm. A 6:1 contracting nozzle having a square outlet cross sectional area of 25 × 25 mm was used to blow air at ambient temperature on the top of the heat sinks with velocities varying from 2 to 20 m/s. The ratio of the gap between the jet exit and the pin tips to the pin height, the so-called tip clearance ratio, was varied from 0 (no tip clearance) to 1. The stagnation pressure recovered at the center of the heat sink was higher for tall pins than short pins. The pressure loss coefficient showed a little dependence on Re, increased with increasing pin density, and pin diameter, and decreased with increasing pin height and clearance ratio. The overall base-to-ambient thermal resistance decreased with increasing Re number, pin density and pin diameter. Surprisingly, the dependence of the thermal resistance on the pin height and clearance ratio was shown to be mild at low Re, and to vanish at high Re number.


2016 ◽  
Author(s):  
Kenan Yakut ◽  
Faruk Yeşildal ◽  
Altuğ Karabey ◽  
Rıdvan Yakut

Author(s):  
Shankar Krishnan ◽  
Domhnaill Hernon ◽  
Marc Hodes ◽  
John Mullins ◽  
Alan M. Lyons
Keyword(s):  

Author(s):  
V.A. Altunin ◽  
K.V. Altunin ◽  
M.R. Abdullin ◽  
M.R. Chigarev ◽  
I.N. Aliev ◽  
...  

The paper discovers the reasons for the transfer of single-use or reusable ground, air, aerospace, and space-based engines and power plants from liquid hydrocarbon fuels and coolers to gaseous fuels, or rather, to liquefied natural gas methane. The study gives specific examples of creating a new technology and using methane fuel and fuel in the existing units; lists the classes of methane engines and power plants, among which the main ones being piston engines and internal combustion power plants, air-jet engines and power plants, liquid propellant rocket engines and power plants. Findings of research show that it is necessary to experimentally study gaseous methane, so that it could be effectively used in advanced single-use or reusable ground, air, aerospace and space-based engines and power plants, and their features should be taken into account when designing and developing new technologies. The study introduces the results of the experimental study of thermal processes in gaseous methane during its natural convection, describes the experimental base in detail, as well as the procedure for conducting experiments, and develops methods for calculating the heat transfer coefficient to gaseous methane relying on the research results.


Sign in / Sign up

Export Citation Format

Share Document