The study of vibrational performance on different doped low creep lead free solder paste and solder ball grid array packages

Author(s):  
Sivasubramanian Thirugnanasambandam ◽  
Thomas Sanders ◽  
Anto Raj ◽  
Derrick Stone ◽  
John Evans ◽  
...  
2011 ◽  
Vol 51 (3) ◽  
pp. 657-667 ◽  
Author(s):  
H. Tsukamoto ◽  
T. Nishimura ◽  
S. Suenaga ◽  
S.D. McDonald ◽  
K.W. Sweatman ◽  
...  

Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Phaklen Ehkan ◽  
Steven Taniselass

2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


Author(s):  
Takahiro Kano ◽  
Ikuo Shohji ◽  
Tetsuyuki Tsuchida ◽  
Toshikazu Ookubo

An electroless Ni/Pd/Au plated electrode is expected to be used as an electrode material for lead-free solder to improve joint reliability. The aim of this study is to investigate the effect of the thickness of the Pd layer on joint properties of the lead-free solder joint with the electroless Ni/Pd/Au plated electrode. Solder ball joints were fabricated with Sn-3Ag-0.5Cu (mass%) lead-free solder balls and electroless Ni/Pd/Au and Ni/Au plated electrodes. Ball shear force and microstructure of the joint were investigated. The (Cu,Ni)6Sn5 reaction layer formed in the joint interface in all specimens. The thickness of the reaction layer decreased with increasing the thickness of the Pd layer. In the joint with a Pd layer 0.36 μm thick, the remained Pd layer was observed in the joint interface. In the joint, impact shear force decreased compared with that of the joint without the remained Pd layer. On the contrary, when the thickness of the Pd layer was less than 0.36 μm, the Pd layer was not remained in the joint interface and impact shear force improved. Impact shear force of the joint with the electroless Ni/Pd/Au plated electrode was higher than that with the electroless Ni/Au one.


Sign in / Sign up

Export Citation Format

Share Document