Prediction Method of Distribution Network Area Based on Association Analysis and Machine Learning

Author(s):  
Jian Wang ◽  
Ying Deng ◽  
Jianwen Zhang ◽  
Jing Liang ◽  
Jin Geng ◽  
...  
2020 ◽  
Author(s):  
Mohammad Alarifi ◽  
Somaieh Goudarzvand3 ◽  
Abdulrahman Jabour ◽  
Doreen Foy ◽  
Maryam Zolnoori

BACKGROUND The rate of antidepressant prescriptions is globally increasing. A large portion of patients stop their medications which could lead to many side effects including relapse, and anxiety. OBJECTIVE The aim of this was to develop a drug-continuity prediction model and identify the factors associated with drug-continuity using online patient forums. METHODS We retrieved 982 antidepressant drug reviews from the online patient’s forum AskaPatient.com. We followed the Analytical Framework Method to extract structured data from unstructured data. Using the structured data, we examined the factors associated with antidepressant discontinuity and developed a predictive model using multiple machine learning techniques. RESULTS We tested multiple machine learning techniques which resulted in different performances ranging from accuracy of 65% to 82%. We found that Radom Forest algorithm provides the highest prediction method with 82% Accuracy, 78% Precision, 88.03% Recall, and 84.2% F1-Score. The factors associated with drug discontinuity the most were; withdrawal symptoms, effectiveness-ineffectiveness, perceived-distress-adverse drug reaction, rating, and perceived-distress related to withdrawal symptoms. CONCLUSIONS Although the nature of data available at online forums differ from data collected through surveys, we found that online patients forum can be a valuable source of data for drug-continuity prediction and understanding patients experience. The factors identified through our techniques were consistent with the findings of prior studies that used surveys.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Junyi Li ◽  
Huinian Li ◽  
Xiao Ye ◽  
Li Zhang ◽  
Qingzhe Xu ◽  
...  

Abstract Background The prediction of long non-coding RNA (lncRNA) has attracted great attention from researchers, as more and more evidence indicate that various complex human diseases are closely related to lncRNAs. In the era of bio-med big data, in addition to the prediction of lncRNAs by biological experimental methods, many computational methods based on machine learning have been proposed to make better use of the sequence resources of lncRNAs. Results We developed the lncRNA prediction method by integrating information-entropy-based features and machine learning algorithms. We calculate generalized topological entropy and generate 6 novel features for lncRNA sequences. By employing these 6 features and other features such as open reading frame, we apply supporting vector machine, XGBoost and random forest algorithms to distinguish human lncRNAs. We compare our method with the one which has more K-mer features and results show that our method has higher area under the curve up to 99.7905%. Conclusions We develop an accurate and efficient method which has novel information entropy features to analyze and classify lncRNAs. Our method is also extendable for research on the other functional elements in DNA sequences.


2021 ◽  
pp. 1-10
Author(s):  
Lei Han ◽  
Wei Li ◽  
Ming Zang

In order to improve the effect of literary works education, this paper combines intelligent machine learning and reader scoring criteria factors to construct an intelligent education model, and proposes a collaborative filtering recommendation algorithm based on item proportion factors and time decay. When calculating the user similarity, this paper adds the scale factor of the intersection of common scoring items to all the scoring items, and considers the non-intersection part of the user scoring items. Secondly, when predicting the project score, this paper adds a time decay function, combines the forgetting curve law to modify the score prediction method, and combines the actual needs to construct the basic framework of the education model. In addition, this paper designs experiments to verify the performance of the literary work education model constructed in this paper. The research results show that the literary work education model constructed in this paper based on intelligent machine learning and reader rating criteria factors has a certain role in promoting the effect of literary education.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dan Jia ◽  
Haitao Duan ◽  
Shengpeng Zhan ◽  
Yongliang Jin ◽  
Bingxue Cheng ◽  
...  

AbstractLong developing period and cumbersome evaluation for the lubricating materials performance seriously jeopardize the successful development and application of any database system in tribological field. Such major setback can be solved effectively by implementing approaches with high throughput calculation. However, it often involves with vast number of output files, which are computed on the basis of first principle computation, having different data format from that of their experimental counterparts. Commonly, the input, storage and management of first principle calculation files and their individually test counterparts, implementing fast query and display in the database, adding to the use of physical parameters, as predicted with the performance estimated by first principle approach, may solve such setbacks. Investigation is thus performed for establishing database website specifically for lubricating materials, which satisfies both data: (i) as calculated on the basis of first principles and (ii) as obtained by practical experiment. It further explores preliminarily the likely relationship between calculated physical parameters of lubricating oil and its respectively tribological and anti-oxidative performance as predicted by lubricant machine learning model. Success of the method facilitates in instructing the obtainment of optimal design, preparation and application for any new lubricating material so that accomplishment of high performance is possible.


Author(s):  
Zheyuan Zhang ◽  
Tianyuan Liu ◽  
Di Zhang ◽  
Yonghui Xie

Abstract In this paper, a method for predicting remaining useful life (RUL) of turbine blade under water droplet erosion (WDE) based on image recognition and machine learning is presented. Using the experimental rig for testing the WDE characteristics of materials, the morphology pictures of specimen surface at different times in the process of WDE are collected. According to the data processing method of ASTM-G73 and the cumulative erosion-time curves, the WDE stages of materials is quantitatively divided and the WDE life coefficient (ζ) is defined. The life coefficient (ζ) could be used to calculate the RUL of turbine blades. One convolutional neural network model and three machine learning models are adopted to train and predict the image dataset. Then the training process and feature maps of the Resnet model are studied in detail. It is found that the highest prediction accuracy of the method proposed in this paper can be 0.949, which is considered acceptable to provide reference for turbine overhaul period and blade replacement time.


Sign in / Sign up

Export Citation Format

Share Document