A Machine Learning Based Prediction Method of Collection Time Level for Free Visit and Pickup Service of End-of-Life Consumer Electronics

2019 ◽  
Vol 19 (2) ◽  
pp. 49-57
Author(s):  
Young Seon Kim ◽  
Yong Cho Lee ◽  
Yerim Choi ◽  
Hyunsoo Kim
2020 ◽  
Author(s):  
Mohammad Alarifi ◽  
Somaieh Goudarzvand3 ◽  
Abdulrahman Jabour ◽  
Doreen Foy ◽  
Maryam Zolnoori

BACKGROUND The rate of antidepressant prescriptions is globally increasing. A large portion of patients stop their medications which could lead to many side effects including relapse, and anxiety. OBJECTIVE The aim of this was to develop a drug-continuity prediction model and identify the factors associated with drug-continuity using online patient forums. METHODS We retrieved 982 antidepressant drug reviews from the online patient’s forum AskaPatient.com. We followed the Analytical Framework Method to extract structured data from unstructured data. Using the structured data, we examined the factors associated with antidepressant discontinuity and developed a predictive model using multiple machine learning techniques. RESULTS We tested multiple machine learning techniques which resulted in different performances ranging from accuracy of 65% to 82%. We found that Radom Forest algorithm provides the highest prediction method with 82% Accuracy, 78% Precision, 88.03% Recall, and 84.2% F1-Score. The factors associated with drug discontinuity the most were; withdrawal symptoms, effectiveness-ineffectiveness, perceived-distress-adverse drug reaction, rating, and perceived-distress related to withdrawal symptoms. CONCLUSIONS Although the nature of data available at online forums differ from data collected through surveys, we found that online patients forum can be a valuable source of data for drug-continuity prediction and understanding patients experience. The factors identified through our techniques were consistent with the findings of prior studies that used surveys.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Junyi Li ◽  
Huinian Li ◽  
Xiao Ye ◽  
Li Zhang ◽  
Qingzhe Xu ◽  
...  

Abstract Background The prediction of long non-coding RNA (lncRNA) has attracted great attention from researchers, as more and more evidence indicate that various complex human diseases are closely related to lncRNAs. In the era of bio-med big data, in addition to the prediction of lncRNAs by biological experimental methods, many computational methods based on machine learning have been proposed to make better use of the sequence resources of lncRNAs. Results We developed the lncRNA prediction method by integrating information-entropy-based features and machine learning algorithms. We calculate generalized topological entropy and generate 6 novel features for lncRNA sequences. By employing these 6 features and other features such as open reading frame, we apply supporting vector machine, XGBoost and random forest algorithms to distinguish human lncRNAs. We compare our method with the one which has more K-mer features and results show that our method has higher area under the curve up to 99.7905%. Conclusions We develop an accurate and efficient method which has novel information entropy features to analyze and classify lncRNAs. Our method is also extendable for research on the other functional elements in DNA sequences.


2021 ◽  
pp. 1-10
Author(s):  
Lei Han ◽  
Wei Li ◽  
Ming Zang

In order to improve the effect of literary works education, this paper combines intelligent machine learning and reader scoring criteria factors to construct an intelligent education model, and proposes a collaborative filtering recommendation algorithm based on item proportion factors and time decay. When calculating the user similarity, this paper adds the scale factor of the intersection of common scoring items to all the scoring items, and considers the non-intersection part of the user scoring items. Secondly, when predicting the project score, this paper adds a time decay function, combines the forgetting curve law to modify the score prediction method, and combines the actual needs to construct the basic framework of the education model. In addition, this paper designs experiments to verify the performance of the literary work education model constructed in this paper. The research results show that the literary work education model constructed in this paper based on intelligent machine learning and reader rating criteria factors has a certain role in promoting the effect of literary education.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 723
Author(s):  
Saurabh Saxena ◽  
Darius Roman ◽  
Valentin Robu ◽  
David Flynn ◽  
Michael Pecht

Lithium-ion batteries power numerous systems from consumer electronics to electric vehicles, and thus undergo qualification testing for degradation assessment prior to deployment. Qualification testing involves repeated charge–discharge operation of the batteries, which can take more than three months if subjected to 500 cycles at a C-rate of 0.5C. Accelerated degradation testing can be used to reduce extensive test time, but its application requires a careful selection of stress factors. To address this challenge, this study identifies and ranks stress factors in terms of their effects on battery degradation (capacity fade) using half-fractional design of experiments and machine learning. Two case studies are presented involving 96 lithium-ion batteries from two different manufacturers, tested under five different stress factors. Results show that neither the individual (main) effects nor the two-way interaction effects of charge C-rate and depth of discharge rank in the top three significant stress factors for the capacity fade in lithium-ion batteries, while temperature in the form of either individual or interaction effect provides the maximum acceleration.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dan Jia ◽  
Haitao Duan ◽  
Shengpeng Zhan ◽  
Yongliang Jin ◽  
Bingxue Cheng ◽  
...  

AbstractLong developing period and cumbersome evaluation for the lubricating materials performance seriously jeopardize the successful development and application of any database system in tribological field. Such major setback can be solved effectively by implementing approaches with high throughput calculation. However, it often involves with vast number of output files, which are computed on the basis of first principle computation, having different data format from that of their experimental counterparts. Commonly, the input, storage and management of first principle calculation files and their individually test counterparts, implementing fast query and display in the database, adding to the use of physical parameters, as predicted with the performance estimated by first principle approach, may solve such setbacks. Investigation is thus performed for establishing database website specifically for lubricating materials, which satisfies both data: (i) as calculated on the basis of first principles and (ii) as obtained by practical experiment. It further explores preliminarily the likely relationship between calculated physical parameters of lubricating oil and its respectively tribological and anti-oxidative performance as predicted by lubricant machine learning model. Success of the method facilitates in instructing the obtainment of optimal design, preparation and application for any new lubricating material so that accomplishment of high performance is possible.


Sign in / Sign up

Export Citation Format

Share Document