Stacked power module with integrated thermal management

Author(s):  
Lauren M. Boteler ◽  
Valerie A. Niemann ◽  
Damian P. Urciuoli ◽  
Steven M. Miner
2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Bakhtiyar Mohammad Nafis ◽  
Ange-Christian Iradukunda ◽  
David Huitink

Abstract Electronic packaging for automotive applications are at particular risk of thermomechanical failure due to the naturally harsh conditions it is exposed to. With the rise of electric and hybrid electric vehicles (EVs and HEVs), combined with a desire to miniaturize, the challenge of removing enough heat from electronic devices in automotive vehicles is evolving. This paper closely examines the new challenges in thermal management in various driving environments and aims to classify each existing cooling method in terms of performance. Particular focus is placed upon emerging solutions regarded to hold great potential, such as phase-change materials (PCMs). PCMs have been regarded for some time as a means of transferring heat quickly away from the region with the electronic components and are widely regarded as a possible means of carrying out cooling in large scale from small areas, because of their high latent heat of fusion, high specific heat, temperature stability, and small volume change during phase change, etc. They have already been utilized as a method of passive cooling in electronics in various ways, but their adoption in automotive power electronics, such as in traction inverters, has yet to be fulfilled. A brief discussion is made on some of the potential areas of application and challenges relating to more widespread adoption of PCMs, with reference to a case study using computational model of a commercially available power module used in automotive applications.


2021 ◽  
Author(s):  
David Earley ◽  
Jordan Mizerak ◽  
Chris May ◽  
Bernard Malouin

Abstract The advent of wide bandgap (WBG) semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), has enabled power electronics with increasing current densities and switching frequencies. A byproduct of these improved electrical characteristics is an increase in thermal power density. Indeed, the full capability of WBG semiconductors may be underutilized if the thermal management solution cannot keep pace with the device heat generation density. Further, as many power electronics devices are integrated into a power module form factor containing a metal baseplate to allow heat spreading from high heat fluxes generated at semiconductor dies, system integrators are often sensitive to cost and weight considerations in building up systems with traditional power module designs. In this paper, a polymer baseplate with integrated microconvective cooling (PBIMC) is designed and built as a low-weight, cost-effective alternative for metal baseplates on power module devices. Microconvective cooling, featuring optimized single-phase impingement cooling and effluent fluid flow control, provides high power density heat removal from localized heat flux areas in power module packages to obviate the need for a metal heat spreader. Thermal performance of the PBIMC is tested on a thermal test vehicle representative of an IGBT power module to power densities up to 200W/cm2 and compared to an off the shelf minichannel cold plate. The PBIMC achieved equivalent per IGBT case-to-fluid areal thermal resistances of 0.15 K-cm2/W, a 69% decrease compared to the baseline cold plate. Additionally, thermal crosstalk was shown to be reduced by up to 89% when moving from the cold plate to the PBIMC, demonstrating potential advantages in utilizing thermal management techniques that do not feature heat spreading. The prototype-level polymer baseplates showed a > 80% decrease in weight compared to a traditional power module metal baseplate. The study concludes that the PBIMC shows promise as a solution for high current density power electronics in weight sensitive applications, while providing opportunities for cost savings.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2176
Author(s):  
Ali Roshanghias ◽  
Perla Malago ◽  
Jaroslaw Kaczynski ◽  
Timothy Polom ◽  
Jochen Bardong ◽  
...  

Copper sinter paste has been recently established as a robust die-attach material for high -power electronic packaging. This paper proposes and studies the implementation of copper sinter paste materials to create top-side interconnects, which can substitute wire bonds in power packages. Here, copper sinter paste was exploited as a fully printed interconnect and, additionally, as a copper clip-attach. The electrical and thermal performances of the copper-sinter paste interconnections (“sinterconnects”) were compared to a system with wire bonds. The results indicate comparable characteristics of the sinterconnect structures to the wire-bonded ones. Moreover, the performance of copper sinterconnects in a power module was further quantified at higher load currents via finite element analysis. It was identified that the full-area thermal and electrical contact facilitated by the planar sinterconnects can reduce ohmic losses and enhance the thermal management of the power packages.


Author(s):  
Anshuman Dey ◽  
Navid Shafiei ◽  
Rahul Khandekar ◽  
Kevin Lau ◽  
Wilson Eberle ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 000398-000403 ◽  
Author(s):  
Reece Whitt ◽  
David Huitink

Abstract As energy demands and power electronics density scale concurrently, reliability of such devices is being challenged. Inadequate thermal management can cause system-wide failures due to thermal run-away, thermal expansion induced stresses, interconnect fractures and many more. Conventional techniques used to cool devices consist of heavy, metallic systems such as cold plates and large heat sinks, which can significantly reduce the overall system power density. Moreover, the manufacturing of such components is expensive and often requires custom-made cold plates for improved integration with the electronic system. Although used as a standard practice, these metallic thermal management systems have the potential to intensify electro-magnetic interference (EMI) when coupling with high frequency switching power electronics, and the material density increases the weight of the system, which is detrimental in mobile applications. Lastly, cold plates and heat sinks can create non-uniform cooling profiles in the electronics due to the insufficient management of hot-spots. To combat these drawbacks, a new heat spreader design has been proposed which reduces weight and EMI effects while eliminating hot-spots through localized fluid impingement. This current study describes the methodology and construction of the experimental test setup to characterize the performance of the heat spreading device compared to an off-the-shelf cold plate. Through infrared imagining, the viability of two heated test sections are evaluated in their ability to replicate power module temperature profiles during operation.


Sign in / Sign up

Export Citation Format

Share Document