Lightweight, Cost-Effective Power Modules Using Polymer Baseplates With Integrated Microconvective Cooling

2021 ◽  
Author(s):  
David Earley ◽  
Jordan Mizerak ◽  
Chris May ◽  
Bernard Malouin

Abstract The advent of wide bandgap (WBG) semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), has enabled power electronics with increasing current densities and switching frequencies. A byproduct of these improved electrical characteristics is an increase in thermal power density. Indeed, the full capability of WBG semiconductors may be underutilized if the thermal management solution cannot keep pace with the device heat generation density. Further, as many power electronics devices are integrated into a power module form factor containing a metal baseplate to allow heat spreading from high heat fluxes generated at semiconductor dies, system integrators are often sensitive to cost and weight considerations in building up systems with traditional power module designs. In this paper, a polymer baseplate with integrated microconvective cooling (PBIMC) is designed and built as a low-weight, cost-effective alternative for metal baseplates on power module devices. Microconvective cooling, featuring optimized single-phase impingement cooling and effluent fluid flow control, provides high power density heat removal from localized heat flux areas in power module packages to obviate the need for a metal heat spreader. Thermal performance of the PBIMC is tested on a thermal test vehicle representative of an IGBT power module to power densities up to 200W/cm2 and compared to an off the shelf minichannel cold plate. The PBIMC achieved equivalent per IGBT case-to-fluid areal thermal resistances of 0.15 K-cm2/W, a 69% decrease compared to the baseline cold plate. Additionally, thermal crosstalk was shown to be reduced by up to 89% when moving from the cold plate to the PBIMC, demonstrating potential advantages in utilizing thermal management techniques that do not feature heat spreading. The prototype-level polymer baseplates showed a > 80% decrease in weight compared to a traditional power module metal baseplate. The study concludes that the PBIMC shows promise as a solution for high current density power electronics in weight sensitive applications, while providing opportunities for cost savings.

Author(s):  
Gilberto Moreno ◽  
Sreekant Narumanchi ◽  
Xuhui Feng ◽  
Paul Anschel ◽  
Steve Myers ◽  
...  

Abstract Effective thermal management of traction-drive power electronics is critical to the advancement of electric-drive vehicles and is necessary for increasing power density and improving reliability. Replacing traditional silicon devices with more efficient, higher temperature, higher voltage, and higher frequency wide-bandgap (WBG) devices will enable increased power density but will result in higher device heat fluxes. Compact packaging of high-temperature WBG devices near low-temperature-rated components creates thermal management challenges that need to be addressed for future power-dense systems. This paper summarizes the thermal performance of on-road automotive power electronics thermal management systems and provides thermal performance and pumping-power metrics for select vehicles. Thermal analyses reveal that the package/conduction resistance dominates the total thermal resistance (for existing automotive systems). We model advanced packaging concepts and compare the results with existing packaging designs to quantify their thermal performance enhancements. Double-side-cooled configurations that do not use thermal interface materials are package concepts predicted to provide a low junction-to-fluid thermal resistance (compared to current packages). Dielectric-fluid-cooled concepts enable a redesign of the package to reduce the package resistance, can be implemented in single- and two-phase cooling approaches, and allow for cooling of passive components (e.g., capacitors) and bus bars.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000398-000403 ◽  
Author(s):  
Reece Whitt ◽  
David Huitink

Abstract As energy demands and power electronics density scale concurrently, reliability of such devices is being challenged. Inadequate thermal management can cause system-wide failures due to thermal run-away, thermal expansion induced stresses, interconnect fractures and many more. Conventional techniques used to cool devices consist of heavy, metallic systems such as cold plates and large heat sinks, which can significantly reduce the overall system power density. Moreover, the manufacturing of such components is expensive and often requires custom-made cold plates for improved integration with the electronic system. Although used as a standard practice, these metallic thermal management systems have the potential to intensify electro-magnetic interference (EMI) when coupling with high frequency switching power electronics, and the material density increases the weight of the system, which is detrimental in mobile applications. Lastly, cold plates and heat sinks can create non-uniform cooling profiles in the electronics due to the insufficient management of hot-spots. To combat these drawbacks, a new heat spreader design has been proposed which reduces weight and EMI effects while eliminating hot-spots through localized fluid impingement. This current study describes the methodology and construction of the experimental test setup to characterize the performance of the heat spreading device compared to an off-the-shelf cold plate. Through infrared imagining, the viability of two heated test sections are evaluated in their ability to replicate power module temperature profiles during operation.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Peng Wang ◽  
Patrick McCluskey ◽  
Avram Bar-Cohen

Recent trends including rapid increases in the power ratings and continued miniaturization of semiconductor devices have pushed the heat dissipation of power electronics well beyond the range of conventional thermal management solutions, making control of device temperature a critical issue in the thermal packaging of power electronics. Although evaporative cooling is capable of removing very high heat fluxes, two-phase cold plates have received little attention for cooling power electronics modules. In this work, device-level analytical modeling and system-level thermal simulation are used to examine and compare single-phase and two-phase cold plates for a specified inverter module, consisting of 12 pairs of silicon insulated gate bipolar transistor (IGBT) devices and diodes. For the conditions studied, an R134a-cooled, two-phase cold plate is found to substantially reduce the maximum IGBT temperature and spatial temperature variation, as well as reduce the pumping power and flow rate, in comparison to a conventional single-phase water-cooled cold plate. These results suggest that two-phase cold plates can be used to substantially improve the performance, reliability, and conversion efficiency of power electronics systems.


Author(s):  
Gerardo Rojo ◽  
Jeff Darabi

Abstract Miniaturization of electronic products and a consequent rapid increase in power density of advanced microprocessors and electronic components have created a need for improved cooling techniques to efficiently remove heat from such devices. Traditional air-cooled heat sinks have been utilized for several decades as the most cost-effective cooling technique for electronic cooling applications. However, the existing thermal management solutions are unable to maintain the temperature of the next generation of complex electronic systems within acceptable limits without adding considerable weight and complexity. This paper reports a microstructured wick for application in passive thermal management systems such as heat pipes and vapor chambers. The wick structure consists of mushroom-like composite copper-carbon nanotubes (Cu-CNT) micropillars. The small spacing between micropillar heads provides a higher capillary pressure whereas the large spacing between the base of micropillars provides a higher permeability for liquid flow. The micropillar array was fabricated on a copper substrate using an electroplating technique. The micropillar array was then tested in a controlled environment to experimentally measure its thermal performance under several operating conditions. A heat removal capability of 80 W/cm2 was demonstrated at a wall superheat of 15° C. In addition, a computational study was performed using ANSYS Fluent to predict the thermal performance of the micropillar array. Model predictions were compared with the experimental results and good agreement was obtained.


Author(s):  
Shankar Narayanan ◽  
Andrei G. Fedorov ◽  
Yogendra K. Joshi

A novel cooling scheme utilizing evaporative cooling for an ultra-thin, spatially confined liquid film is described for meeting the challenge of hot spot thermal management aiming at locally removing heat fluxes in excess of 200 W/cm2. This work presents the conceptual system design and results of performance calculations supporting the feasibility of the proposed cooling scheme. The phase change heat transfer is one of the most efficient means of heat transfer due to an advantage offered by the significant latent heat of vaporization of liquids. Fundamentally, evaporation could be a much more efficient method of heat removal as compared to boiling if certain conditions are met. Theoretically, we demonstrate that if a stable monolayer of liquid can be maintained on the surface and fully dry sweeping gas (e.g., air) is blown at high velocity above this liquid monolayer one can dissipate heat fluxes of the order of several hundreds of Watts per cm2. We also show that a more volatile FC-72 can outperform water in evaporative cooling using stable liquid microfilms.


Author(s):  
Clayton L. Hose ◽  
Dimeji Ibitayo ◽  
Lauren M. Boteler ◽  
Jens Weyant ◽  
Bradley Richard

This work presents a demonstration of a coefficient of thermal expansion (CTE) matched, high heat flux vapor chamber directly integrated onto the backside of a direct bond copper (DBC) substrate to improve heat spreading and reduce thermal resistance of power electronics modules. Typical vapor chambers are designed to operate at heat fluxes > 25 W/cm2 with overall thermal resistances < 0.20 °C/W. Due to the rising demands for increased thermal performance in high power electronics modules, this vapor chamber has been designed as a passive, drop-in replacement for a standard heat spreader. In order to operate with device heat fluxes >500 W/cm2 while maintaining low thermal resistance, a planar vapor chamber is positioned onto the backside of the power substrate, which incorporates a specially designed wick directly beneath the active heat dissipating components to balance liquid return and vapor mass flow. In addition to the high heat flux capability, the vapor chamber is designed to be CTE matched to reduce thermally induced stresses. Modeling results showed effective thermal conductivities of up to 950 W/m-K, which is 5 times better than standard copper-molybdenum (CuMo) heat spreaders. Experimental results show a 43°C reduction in device temperature compared to a standard solid CuMo heat spreader at a heat flux of 520 W/cm2.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Fabio Battaglia ◽  
Farah Singer ◽  
David C. Deisenroth ◽  
Michael M. Ohadi

Abstract In this paper, we present the results of an experimental study involving low thermal resistance cooling of high heat flux power electronics in a forced convection mode, as well as in a thermosiphon (buoyancy-driven) mode. The force-fed manifold microchannel cooling concept was utilized to substantially improve the cooling performance. In our design, the heat sink was integrated with the simulated heat source, through a single solder layer and substrate, thus reducing the total thermal resistance. The system was characterized and tested experimentally in two different configurations: the passive (buoyancy-driven) loop and the forced convection loop. Parametric studies were conducted to examine the role of different controlling parameters. It was demonstrated that the thermosiphon loop can handle heat fluxes in excess of 200 W/cm2 with a cooling thermal resistance of 0.225 (K cm2)/W for the novel cooling concept and moderate fluctuations in temperature. In the forced convection mode, a more uniform temperature distribution was achieved, while the heat removal performance was also substantially enhanced, with a corresponding heat flux capacity of up to 500 W/cm2 and a thermal resistance of 0.125 (K cm2)/W. A detailed characterization leading to these significant results, a comparison between the performance between the two configurations, and a flow visualization in both configurations are discussed in this paper.


Author(s):  
Matthew Redmond ◽  
Kavin Manickaraj ◽  
Owen Sullivan ◽  
Satish Kumar

Three dimensional (3D) technologies with stacked chips have the potential to provide new chip architecture, improved device density, performance, efficiency, and bandwidth. Their increased power density also can become a daunting challenge for heat removal. Furthermore, power density can be highly non-uniform leading to time and space varying hotspots which can severely affect performance and reliability of the integrated circuits. Thus, it is important to mitigate thermal gradients on chip while considering the associated cooling costs. One method of thermal management currently under investigation is the use of superlattice thermoelectric coolers (TECs) which can be employed for on demand and localized cooling. In this paper, a detailed 3D thermal model of a stacked electronic package with two dies and four ultrathin integrated TECs is studied in order to investigate the efficacy of TECs in hot spot cooling for a 3D technology. We observe up to 14.6 °C of cooling at a hot spot inside the package by TECs. A strong vertical coupling has been observed between the TECs located in top and bottom dies. Bottom TECs can detrimentally heat the top hotspots in both steady state and transient operation. TECs need to be carefully placed inside the package to avoid such undesired heating. Thermal contact resistances between dies, inside the TEC module, and between the TEC and heat spreader are shown to have a crucial effect on TEC performance inside the package. We observed that square root current pulse can provide very efficient short-duration transient cooling at hotspots.


Author(s):  
Peng Wang ◽  
Patrick McCluskey ◽  
Avram Bar-Cohen

Rapid increases in the power ratings and continued miniaturization of semiconductor devices have pushed the heat flux of power electronics well beyond the range of conventional thermal management techniques, and thus maintaining the IGBT temperature below a specified limit has become a critical issue for thermal management of electric vehicle power electronics. Although two-phase cold plates have been identified as a very promising high flux cooling solution, they have received little attention for cooling of power electronics. In this work, a first-order analytical model and a system-level thermal simulation are used to compare single-phase and two-phase cold plate cooling for Toyota Prius motor inverter, consisting of 12 pairs of IGBT’s and diodes. Our results demonstrate that with the same cold plate geometry, R134a two-phase cooling can substantially reduce the maximum IGBT temperature, operate all the IGBT’s at very uniform temperatures, and lower the pumping power and flow rate in comparison to single-phase cold plate cooling. These results suggest that two-phase cold plate can be developed as a low-cost, small-volume, and high-performance cooling solution to improve system reliability and conversion efficiency for electric vehicle power electronics.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 934
Author(s):  
Hyejun Kang ◽  
Ashutosh Sharma ◽  
Jae Pil Jung

Transient liquid phase (TLP) bonding is a novel bonding process for the joining of metallic and ceramic materials using an interlayer. TLP bonding is particularly crucial for the joining of the semiconductor chips with expensive die-attached materials during low-temperature sintering. Moreover, the transient TLP bonding occurs at a lower temperature, is cost-effective, and causes less joint porosity. Wire bonding is also a common process to interconnect between the power module package to direct bonded copper (DBC). In this context, we propose to review the challenges and advances in TLP and ultrasonic wire bonding technology using Sn-based solders for power electronics packaging.


Sign in / Sign up

Export Citation Format

Share Document