Moisture Related Low-K Dielectric Reliability Before and After Thermal Annealing

Author(s):  
Yunlong Li ◽  
Ivan Ciofi ◽  
Laureen Carbonell ◽  
Guido Groeseneken ◽  
Karen Maex ◽  
...  
1979 ◽  
Vol 44 (12) ◽  
pp. 3632-3643 ◽  
Author(s):  
Karel Mach ◽  
Igor Janovský ◽  
Karel Vacek

Total yields of paramagnetic species, their optical bleaching and thermal annealing in acetic, propionic, a-butyric, isobutyric, and pivalic acid γ-irradiated at 77 K were followed by ESR spectroscopy. Radical anions, always found after irradiation, disappear during optical bleaching without formation of any paramagnetic product. During thermal annealing they are converted almost quantitatively into the α-radicals of the respective acid, with the exception of pivalic acid. Amounts of radical anions were estimated from the difference of integrated ESR spectra taken before and after optical bleaching. The results show that approximately equal amounts of the reduction and oxidation paramagnetic products of the γ-irradiation can be detected.


2007 ◽  
Vol 62 (10-11) ◽  
pp. 609-619 ◽  
Author(s):  
Zivayi Chiguvare ◽  
Jürgen Parisi ◽  
Vladimir Dyakonov

The effects of thermal annealing on the bulk transport properties of poly(3-hexylthiophene) (P3HT) were studied by analyzing room temperature current-voltage characteristics of polymer thin films sandwiched between indium tin oxide/poly[ethylene dioxythiophene]:poly[styrene sulfonate] (ITO/PEDOT:PSS) and aluminum electrodes, before and after a thermal annealing step. It was observed that annealing takes place in two steps: (1) Dedoping of the polymer of impurities such as oxygen, remnant solvent, water, leading to a decrease in the conductivity of the film, and (2) thermally induced motion of the polymer chains leading to closer packing, thus, stronger inter-chain interaction and, consequently, increase in conductivity. It was also observed that the ITO/PEDOT:PSS/P3HT hole injection barrier increases on annealing the ITO/PEDOT:PSS/P3HT/Al thin film devices. The implications of impurity dedoping and closer packing on the output characteristics of bulk heterojunction polymer-fullerene thin film solar cells are discussed.


1988 ◽  
Vol 255 (3) ◽  
pp. C331-C339 ◽  
Author(s):  
P. K. Lauf

The effect of six different anions on the volume response of ouabain-resistant K transport was systematically studied at extracellular pH (pHo) = 7.4 in sheep red blood cells of both low and high K genotype before and after treatment with the sulfhydryl (SH) reagent N-ethylmaleimide (NEM). In methanesulfonate (CH3SO3), both the apparent Rb permeability (P(app)Rb), calculated from ouabain-resistant Rb influx), and K permeability (PK, calculated from the rate constants of ouabain-resistant zero-trans K efflux, 0k(OR)K) were volume independent and close to 10(-10) cm/s for both cell types, but in Cl, Br, I, SCN, and NO3 they were significantly different in low and high K cells with altered cell volumes. Thus, in 15% osmotically shrunken low K cells, P(app)Rb) and PK were similar regardless of the anions present, but upon 10-15% swelling, they increased to approximately 4-6 X 10(-9) cm/s in Br and 2 X 10(-9) cm/s in Cl and also increased with comparatively small increments in I, SCN, and NO3. Treatment with NEM enhanced both P(app)Rb) and PK, particularly in shrunken low K cells, to approximately 10(-8) cm/s in Br and Cl but not in I, SCN, and NO3. In shrunken or isotonic high K cells, P(app)Rb) and PK were close to 10(-10) cm/s in all anions except for SCN. Swelling and/or NEM increased PK and P(app)Rb) in Cl and Br only two- to threefold.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 69 (3-4) ◽  
pp. 353-356
Author(s):  
C. Aktik ◽  
J. F. Currie ◽  
F. Bosse ◽  
R. W. Cochrane ◽  
J. Auclair

Si-doped GaAs epitaxial layers grown by metal-organic chemical vapour deposition exhibit substantial carrier density loss after rapid thermal annealing (RTA) at temperatures higher than 850 °C. Hall-effect, capacitance–voltage, deep-level transient spectroscopy, and secondary ion mass spectroscopy measurements were performed on samples before and after RTA. We show that the reduction of free-carrier concentration in the entire thickness of the epitaxial layer is accompanied by the deterioration of the mobility and the enhancement of donor-like deep-level concentration at 0.305 eV below the conduction band, which is in good agreement with the model of silicon donor neutralization by formation of neutral silicon–hydrogen complexes.


2008 ◽  
Vol 1079 ◽  
Author(s):  
Junichi Koike ◽  
Junichi Koike ◽  
Zsolt Tökei

ABSTRACTSelf-forming barrier process was carried out on a porous low-k material with the Cu-Mn alloys. The effects of various surface treatments were investigated in the sample having a pore size of 0.9 nm and a porosity of 25%. Before and after annealing, samples were analyzed in cross section with transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS). Concentration profile was also analyzed with time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The results indicated the penetration of Cu into the low-k interior during deposition, followed by the segregation of Cu at the low-k/Si interface during subsequent annealing. Although a diffusion barrier layer was formed and no further Cu penetration was not observed during annealing, initial Cu penetration in the deposition process was detrimental and should be prevented by restoring the plasma damage on the low-k surface.


2016 ◽  
Vol 432 ◽  
pp. 183-188 ◽  
Author(s):  
D.A. Zatsepin ◽  
A.F. Zatsepin ◽  
D.W. Boukhvalov ◽  
E.Z. Kurmaev ◽  
Z.V. Pchelkina ◽  
...  

2016 ◽  
Vol 75 (8) ◽  
pp. 605-613
Author(s):  
W. S. Yoo ◽  
K. Kang ◽  
H. Nishigaki ◽  
N. Hasuike ◽  
H. Harima ◽  
...  

2018 ◽  
Vol 170 ◽  
pp. 04004
Author(s):  
G. Cheymol ◽  
L. Remy ◽  
A. Gusarov ◽  
D. Kinet ◽  
P. Mégret ◽  
...  

Optical fibre sensors (OFS) are worthy of interest for measurements in nuclear reactor thanks to their unique features, particularly compact size and remote multi-point sensing for some of them. But besides non negligible constraints associated with the high temperature environment of the experiments of interest, it is well known that the performances of OFS can be severely affected by high level of radiations. The Radiation Induced Attenuation (RIA) in the fibre is probably most known effect, which can be to some extent circumvented by using rad hard fibres to limit the dynamic loss. However, when the fast neutron fluence reaches 1018 to 1019 n/cm2, the density and index variations associated to structural changes may deteriorate drastically the performances of OFS even if they are based on rad hard fibres, by causing direct errors in the measurements of temperature and/or strain changes. The aim of the present study is to access the effect of nuclear radiations on the Fabry Perot (FP) and of Fibre Bragg Grating (FBG) sensors through the comparison of measurements made on these OFS - or part of them - before and after irradiation [1]. In the context of development of OFS for high irradiation environment and especially for Material Testing Reactors (MTRs), Sake 2 experiment consists in an irradiation campaign at high level of gamma and neutron fluxes conducted on samples of fibre optics – bare or functionalised with FBG. The irradiation was performed at two levels of fast neutron fluence: 1 and 3.1019 n/cm2 (E>1MeV), at 250°± 25°C, in the SCK•CEN BR2 reactor (Mol Belgium). An irradiation capsule was designed to allow irradiation at the specified temperature without active control. The neutron fluence was measured with activation dosimeters and the results were compared with MCPN computations. Investigation of bare samples gives information on the density changes, while for the FBGs both density and refractive index perturbation are involved. Some results for bare fibres were reported recently. In this paper, we will focus on the measurements made on FBGs that have been manufactured by different laboratories on SMF 28 fibers: CEA, University of St-Etienne and University of Mons. Tested gratings have been written using various conditions (type of fibre, of laser, writing wavelength, power density, post writing thermal annealing,…), leading to various behaviours after Sake 2 irradiation. Bragg wavelength and reflectivity have been measured before and after irradiation thanks to a special mounting at the same temperature. It appears that a change in the shape after irradiation of the Bragg peak disturb the retrieval of the Bragg wavelength. The measurements show that for nearly all gratings the Bragg peak remains visible after the irradiation, and that Radiation Induced Bragg Wavelength Shifts (RI-BWSs) vary from few pm (equivalent to an error of less than 1°C for a temperature sensor) to nearly 1 nm (equivalent to 100°C) depending of the FBG types. High RI-BWSs could indeed be expected when considering the huge refractive index variation and compaction of the bare fibre samples that have been measured by other techniques. Post writing thermal annealing is confirmed as a key parameter in order to obtain a more radiation tolerant FBG. Our results show that specific annealing regimes allow making FGBs suitable to perform temperature measurements in a MTR experiment.


2012 ◽  
Vol 1428 ◽  
Author(s):  
M. B. Krishtab ◽  
L. Zhang ◽  
Q. T. Le ◽  
K. Vanstreels ◽  
L. Souriau ◽  
...  

ABSTRACTIn this work a new generation of periodic mesoporous organosilica (PMO) low-k dielectrics with targeted k-values 2.0 and 1.8 is evaluated. In addition, impact of two different curing processes on properties of the mesoporous material is analyzed. It is shown that removal of templating organics with thermal annealing leads to formation of mechanically robust and chemically very stable material, while application of UV-assisted curing with broadband lamp (λ > 200 nm) causes pronounced decrease of film ability to sustain in diluted HF solution. The explanation of that phenomenon is given in terms of silica-ring structures formed within organosilica skeleton.


1992 ◽  
Vol 279 ◽  
Author(s):  
S. H. Morgan ◽  
D. O. Henderson ◽  
Z. Pan ◽  
R. H. Magruder ◽  
R. A. Zuhr

ABSTRACTOptical and infrared reflection spectra for Bi implanted silica are reported as a function of dose and thermal annealing. A series of high purity silica samples were implanted with Bi ions at an energy of 350 KeV. Doses were 1 × 1016 and 1.0 × 1017ions/cm2 at 5μamps/cm2. The samples were subsequently thermally annealed at 400, 600 and 800 C. The optical absorption from 6.2 to 1.8 eV and infrared reflectance from 5000 to 450 cm”−1 were measured before and after annealing. Effects of thermal annealing are strongly dependent on Bi content.


Sign in / Sign up

Export Citation Format

Share Document