scholarly journals Failure process characteristics of cloud-enabled services

Author(s):  
Besmir Tola ◽  
Yuming Jiang ◽  
Bjarne E. Helvik
Author(s):  
Bhanu Sood ◽  
Lucas Severn ◽  
Michael Osterman ◽  
Michael Pecht ◽  
Anton Bougaev ◽  
...  

Abstract A review of the prevalent degradation mechanisms in Lithium ion batteries is presented. Degradation and eventual failure in lithium-ion batteries can occur for a variety of dfferent reasons. Degradation in storage occurs primarily due to the self-discharge mechanisms, and is accelerated during storage at elevated temperatures. The degradation and failure during use conditions is generally accelerated due to the transient power requirements, the high frequency of charge/discharge cycles and differences between the state-of-charge and the depth of discharge influence the degradation and failure process. A step-by-step methodology for conducting a failure analysis of Lithion batteries is presented. The failure analysis methodology is illustrated using a decision-tree approach, which enables the user to evaluate and select the most appropriate techniques based on the observed battery characteristics. The techniques start with non-destructive and non-intrusive steps and shift to those that are more destructive and analytical in nature as information about the battery state is gained through a set of measurements and experimental techniques.


2019 ◽  
Vol 14 (2) ◽  
pp. 82-88
Author(s):  
M.V. Alekseev ◽  
I.S. Vozhakov ◽  
S.I. Lezhnin

A numerical simulation of the process of the outflow of gas under pressure into a closed container partially filled with liquid was carried out. For comparative theoretical analysis, an asymptotic model was used with assumptions about the adiabaticity of the gas outflow process and the ideality of the liquid during the oscillatory one-dimensional motion of the liquid column. In this case, the motion of the liquid column and the evolution of pressure in the gas are determined by the equation of dynamics and the balance of enthalpy. Numerical simulation was performed in the OpenFOAM package using the fluid volume method (VOF method) and the standard k-e turbulence model. The evolution of the fields of volumetric gas content, velocity, and pressure during the flow of gas from the high-pressure chamber into a closed channel filled with liquid in the presence of a ”gas blanket“ at the upper end of the channel is obtained. It was shown that the dynamics of pulsations in the gas cavity that occurs when the gas flows into the closed region substantially depends on the physical properties of the liquid in the volume, especially the density. Numerical modeling showed that the injection of gas into water occurs in the form of a jet outflow of gas, and for the outflow into liquid lead, a gas slug is formed at the bottom of the channel. Satisfactory agreement was obtained between the numerical calculation and the calculation according to the asymptotic model for pressure pulsations in a gas projectile in liquid lead. For water, the results of calculations using the asymptotic model give a significant difference from the results of numerical calculations. In all cases, the velocity of the medium obtained by numerical simulation and when using the asymptotic model differ by an order of magnitude or more.


1981 ◽  
Vol 46 (9) ◽  
pp. 2032-2042 ◽  
Author(s):  
Pavel Seichter

A conductivity method has been used to assess the homogenization efficiency of screw impellers with draught tubes. The value of the criterion of homochronousness, i.e. the dimensionless time of homogenization, in the creeping flow regime of Newtonian liquids is dependent on the geometrical simplexes of the mixing system. In particular, on the ratio of diameters of the vessel and the impeller and on the ratio of the screw lead to the impeller diameter. Expression have been proposed to calculate the mixing times. Efficiency has been examined of individual configurations of screw impellers. The lowest energy requirements for homogenization have been found for the system with the ratio D/d = 2.


1981 ◽  
Vol 46 (9) ◽  
pp. 2021-2031 ◽  
Author(s):  
Pavel Seichter

Velocity profiles and pumping capacity have been determined using a thermistor anemometer in a vessel equipped with a screw impeller. In region of the creeping flow of a Newtonian liquid, i.e. for Re <15, the dimensionless pumping capacity is dependent on the geometrical arrangement of the mixing system. The efficiency was assessed of individual configuration from the value energy criterion expressing the dimensionless power requirements for recirculation of a highly viscous liquid in a vessel equipped with a screw impeller.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2135
Author(s):  
Marcin Witczak ◽  
Marcin Mrugalski ◽  
Bogdan Lipiec

The paper presents a new method of predicting the remaining useful life of technical devices. The proposed soft computing approach bridges the gap between analytical and data-driven health prognostic approaches. Whilst the former ones are based on the classical exponential shape of degradation, the latter ones learn the degradation behavior from the observed historical data. As a result of the proposed fusion, a practical method for calculating components’ remaining useful life is proposed. Contrarily to the approaches presented in the literature, the proposed ensemble of analytical and data-driven approaches forms the uncertainty interval containing an expected remaining useful life. In particular, a Takagi–Sugeno multiple models-based framework is used as a data-driven approach while an exponential curve fitting on-line approach serves as an analytical one. Unlike conventional data-driven methods, the proposed approach is designed on the basis of the historical data that apart from learning is also applied to support the diagnostic decisions. Finally, the entire scheme is used to predict power Metal Oxide Field Effect Transistors’ (MOSFETs) health status. The status of the currently operating MOSFET is determined taking into consideration the knowledge obtained from the preceding MOSFETs, which went through the run-to-failure process. Finally, the proposed approach is validated with the application of real data obtained from the NASA Ames Prognostics Data Repository.


2007 ◽  
Vol 2 (1) ◽  
pp. 33-48
Author(s):  
Graciela Brusa ◽  
María Laura Caliusco ◽  
Omar Chiotti

Nowadays, organizational innovation constitutes the government challenges for providing better and more efficient services to citizens, enterprises or other public offices. E–government seems to be an excellent opportunity to work on this way. The applications that support front-end services delivered to users have to access information systems of multiple government areas. This is a significant problem for e-government back-office since multiple platforms and technologies coexist. Moreover, in the back-office there is a great volume of data that is implicit in the software applications that support administration activities. In this context, the main requirement is to make available the data managed in the back-office for the e-government users in a fast and precise way, without misunderstanding. To this aim, it is necessary to provide an infrastructure that make explicit the knowledge stored in different government areas and deliver this knowledge to the users. This paper presents an approach on how ontological engineering techniques can be applied to solving the problems of content discovery, aggregation, and sharing in the e-government back-office. This approach is constituted by a specific process to develop an ontology in the public sector and an ontology-based architecture. In order to present the process characteristics, a case study applied to a local government domain is analyzed. This domain is the budget and financial information of Santa Fe Province (Argentine).


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 302
Author(s):  
Wiktor Wciślik ◽  
Tadeusz Pała

This review paper discusses the basic problems related to the use of cohesive models to simulate the initiation and development of failure in various types of engineering issues. The most commonly used cohesive zone models (CZMs) are described. Recent achievements in the field of cohesive modeling are characterized, with particular emphasis on the problem of mixed mode loading, the influence of the strain rate, the stress state triaxiality, and fatigue. A separate chapter of the work is devoted to the identification of cohesive parameters. Examples of the use of CZMs for the analysis of the fracture and failure process in various applications, both on the macro and microscopic scale, are given. The directions of CZMs development were indicated as well as the issues that are currently under particularly intensive development.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 423
Author(s):  
Chunde Ma ◽  
Jiaqing Xu ◽  
Guanshuang Tan ◽  
Weibin Xie ◽  
Zhihai Lv

Red shale is widely distributed among the deep mine areas of Kaiyang Phosphate Mine, which is the biggest underground phosphate mine of China. Because of the effect of various factors, such as high stress, ground water and so on, trackless transport roadways in deep mine areas were difficult to effectively support for a long time by using traditional supporting design methods. To deal with this problem, some innovative works were carried out in this paper. First, mineral composition and microstructure, anisotropic, hydraulic mechanical properties and other mechanical parameters of red shale were tested in a laboratory to reveal its deformation and failure characteristics from the aspect of lithology. Then, some numerical simulation about the failure process of the roadways in layered red shale strata was implemented to investigate the change regulation of stress and strain in the surrounding rock, according to the real rock mechanical parameters and in-situ stress data. Therefore, based on the composite failure law and existing support problems of red shale roadways, some effective methods and techniques were adopted, especially a kind of new wave-type bolt that was used to relieve rock expansion and plastic energy to prevent concentration of stress and excess deformation. The field experiment shows the superiorities in new techniques have been verified and successfully applied to safeguard roadway stability.


Sign in / Sign up

Export Citation Format

Share Document