Back gate bias dependent quasi-saturation in a high-voltage SOI MOSFET: 2D analysis and closed-form analytical model

Author(s):  
C.M. Liu ◽  
J.B. Kuo
2015 ◽  
Vol 10 (1) ◽  
pp. 43-48
Author(s):  
Leonardo N. de S. Fino ◽  
Marcilei A. Guazzelli ◽  
Christian Renaux ◽  
Denis Flandre ◽  
Salvador P. Gimenez

This work investigates the X-ray irradiation impact on the performance of an on-conventional transistor called OCTO SOI MOSFET that adopts an octagonal gate shape instead of a rectangular. The electrical behaviors of both devices were studied through an experimental comparative analysis of the total ionizing dose influence. In addition, the back-gate bias technique was applied in these devices to reestablish its threshold voltages and drain currents conditions that were degraded due the trapping of positive charges in the buried oxide. As the main finding of this work, after the irradiation procedure, we notice that the OCTO device is capable to reestablish its pre-rad electrical behavior with a smaller back gate bias than the one observed in the standard one counterpart. This is mainly because the parasitic transistors in the bird’s beak region are practically deactivated due the particular octagonal gate geometry.


2009 ◽  
Vol 56 (8) ◽  
pp. 1659-1666 ◽  
Author(s):  
Xiaorong Luo ◽  
Daping Fu ◽  
Lei Lei ◽  
Bo Zhang ◽  
Zhaoji Li ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 504-511
Author(s):  
Sikha Mishra ◽  
Urmila Bhanja ◽  
Guru Prasad Mishra

Introduction: A new analytical model is designed for Workfunction Modulated Rectangular Recessed Channel-Silicon On Insulator (WMRRC-SOI) MOSFET that considers the concept of groove gate and implements an idea of workfunction engineering. Methods: The impact of Negative Junction Depth (NJD) and oxide thickness (tox) are analyzed on device performances such as Sub-threshold Slope (SS), Drain Induced Barrier Lowering (DIBL) and threshold voltage. Results: The results of the proposed work are evaluated with the Rectangular Recessed Channel-Silicon On Insulator (RRC-SOI) MOSFET keeping the metal workfunction constant throughout the gate region. Furthermore, an analytical model is developed using 2D Poisson’s equation and threshold voltage is estimated in terms of minimum surface potential. Conclusion: In this work, the impact of Negative Junction Depth (NJD) on minimum surface potential and the drain current are also evaluated. It is observed from the analysis that the analog switching performance of WMRRC-SOI MOSFET surpasses RRC-SOI MOSFET in terms of better driving capability, high Ion/Ioff ratio, minimized Short Channel Effects (SCEs) and hot carrier immunity. Results are simulated using 2D Sentaurus TCAD simulator for validation of the proposed structure.


Author(s):  
Kai Zhang ◽  
Weifeng Lü ◽  
Peng Si ◽  
Zhifeng Zhao ◽  
Tianyu Yu

Background: In state-of-the-art nanometer metal-oxide-semiconductor-field-effect- transistors (MOSFETs), optimization of timing characteristic is one of the major concerns in the design of modern digital integrated circuits. Objective: This study proposes an effective back-gate-biasing technique to comprehensively investigate the timing and its variation due to random dopant fluctuation (RDF) employing Monte Carlo methodology. Methods: To analyze RDF-induced timing variation in a 22-nm complementary metal-oxide semiconductor (CMOS) inverter, an ensemble of 1000 different samples of channel-doping for negative metal-oxide semiconductor (NMOS) and positive metal-oxide semiconductor (PMOS) was reproduced and the input/output curves were measured. Since back-gate bias is technology dependent, we present in parallel results with and without VBG. Results: It is found that the suppression of RDF-induced timing variations can be achieved by appropriately adopting back-gate voltage (VBG) through measurements and detailed Monte Carlo simulations. Consequently, the timing parameters and their variations are reduced and, moreover, that they are also insensitive to channel doping with back-gate bias. Conclusion: Circuit designers can appropriately use back-gate bias to minimize timing variations and improve the performance of CMOS integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document